" "14-Feb-90 Rev. 7
99/9640 FORTRAN Manual Errata Sheet

‘he follclwing are a list of errors and extensions to the 4.3 99/9640 FORTRAN manual which make up
version 4.4:

pp 01-8, Section 1.1 Geftiing Started:
Replace paragraph starting with "If you have a hard ..." with:

If you have a hard disk using the MYARC HFDC, you may wish to place the TI-99 implementation of
the compiler in the directory:

HDS1.DSK.FORTCOMP

pp 02-1, Section 2.1 T-89 (GPL Implementation) Editor
Add the following entry to the editor menu selection list:
7 Exit
PP 02-8, Sectien 2.1.7 Exiting the Editor
Add the following statements:
The editor can also be exited by selecting item 7 (Exit) from the Editor Menu Display.
@rhe prompt "Are You Sure (Y/I\lfjc') is only displayed if the working buffer contains a program which has

been modified and not saved. For example, if you load a program into the editor and do not modify it,
the editor will exit immediately upon depression of the "7 (Exit)" or "Fctn/Back".

pp 03-2, Section 3.1.2 Statement Format

FORTRAN statements now extend from columns 7 to 80, not 7 to 72. The columns 73 to 80 are no
longer ignored.

PP 03-2; Section 3.1.3 Constants
Add to the section "A. Numeric Constants™:

6. Complex Constants
7. Double Precision Complex Constants

pp 036, Add tweo new seciions 3.1.3.9 and 3.1.3.10
3.1.3.9 Complex Constants

omplex constants have two single J)recision (real *8) components, a real component and an
aginary component. These real and imaginary components are specified as two single precision
umbers, enclosed in parenthesis, and seperated by a comma:

(real, imaginary)

=
H
i

. are not allowed:

The following are examples of valid complex constants:

1.0,2.0)
1.0, -2.0)
0.0,3.14159)

A complex constant requires e/jght bytes of storage.

3.1.3.10 Double Precision Complex Constants
Double precision complex constants have two double precision (real *8) components, a real compo-
nent and an ima?inary component. These real and imaginary components are specified as two dou-
ble precision real numbers, enclosed in parenthesis, and seperated by a comma:
(real imaginary)

The following are examples of valid complex constants:

1.0d0, 2.0d0)

1.0d0, -2.0d0)

0.0d0, 3.14159d0)
A double precision complex constant requires sixfeenbytes of storage.

If one of the components is specified as single precision real, and the other as double precision, then
the resulting constant will be of type double precision complex. Integer numbers within the cons

(1,2.0d0)

is an illegal complex constant since it contains an integer value (1).

pp 08-7, Section 3.1.5 FORTRAN Verlables
Change the last sentence of the section starting ... Array variables must be declared... to:
A B S SRS NS, QOUBLE PRECISON. LoGioA
pp 08-11, Section 3.2.1 Arithmetic Assignment Stetement
Change the definition of a to: |
cha ,aa Cfi:,’aa\rflgriable (scalar or array) whose type is /infeger, real, double precision, complexor
pp 08-19, Section 3.8
Add the following to the allowable 1/0 Statements: .
- ACCEPT Statements

- PRINT Statements
- TYPE Statements

PP 03-19, Section 3.3.1 READ Statement
. Add the following General Form:
read (i, n [,keys]) variable list
(r)erad [n],variable list
Add the following kéyword:

IOSTAT=m where m is an integer scalar variablé into which st&tus iMorrha¥on i to be stored
if an error occurs (same as STATUS=).

pp 03-21, Seciion 3.3.3 Variable Lists

Add the following statements to the end of section 3.3.3:

A variable list may contain an embedded strin%, enclosed in apostrophes per normal FORTRAN
string conventions. The corresponding FORMAT item for the string MUST be the FORKMAT$p8GMEMN T
A (with no length), or the length must match the string length.

For example:

WRITE (6, 9100) 'THE VALUE OF Z IS’,Z
9100 FORMAT (1X, A, 1X, F8.2)

. This is especially useful for list directed formatting, i.e.:
PRINT /“THE VALUEOF Z IS’ Z
is a valid output statement and will cause the following line to be output to the CRT:
THEVALUEOF ZIS 29.7123457

PP 03-22; Seclion 3.3.5; 3.3.8, 3.3.7 New Sections
Add the following sections:
3.3.5 ACCEPT Statement

The ACCEPT statement is similar to the READ statement, except that the unit number is always
assumed to be unit 6, the CRT device.

General Form:
ACCEPT [n],variable list

where:

N

n is the label of a FORMAT statement, the name of an array which contains the FORMAT
. specification, or is omitted if ist directed formatting is used.

varlable list is a normal I/O variable list to be transferred.

For example:

ACCEPT X, | | .
ACCEPT 9100,X||
9100 FORMAT (F10.2,16)
in the first example, the values for X and | will be solicited at the CRT device (console) using list

directed formatting. In the second example, the values for X and | will also be prompted at the CRT,
and FORMAT statement 9100 will be used to decode the data.

'3.3.6 TYPE and PRINT Statements

The TYPE and PRINT statements are similar to the WRITE statement, but the output device is
always the CRT or console device.

General Form:

TYPE n]],variable list
PRINT [n],variable list

where n and variable list are the same as described for the ACCEPT statement.

For example:
PRINT.I.J.X
00 Eé%%ﬁ%}o(ofé Jf«)f F10.2)
N . @

would specify in the first example that |, J, and X are to be written: to the CRT device using list
directed formatting; whereas in the second example |, J, and X are to be tranferred to the CRT device
according to FORMAT statement 9100. :

3.3.7 List Directed Formatting

List directed formatfing allows you to specify a read or write operation without specifying a FORMAT
statement. This is mainly useful for debug statements or for output whose format is not important.

List directed formatting is activated by either omitting the FORMAT statement number or specifying
an asterick for the FORMAT statment number. For example:

WRITE (8, *) X, Z,p&_ARRAY 1),1=1,10)
READ (6, *) X, 'VALUE Z 1S "z, (ARRAY(l),I=1,10)

TYPE *A
PRINT ,Z
ACCEPT *,A,B,TI_MODE

Note in each example the FORMAT number is either omitted or replaced by an asfer/ck, indicating list
directed formatting.

List directed formatting assumes that the carriage control for the line is single carriage return/line feed
(the space specifier), and assumes the following formats for each variable type:

INTEGER *1 15
INTEGER *2 18
INTEGER *4 113

COMPLEX *8 2F16.7

COMPLEX *16 2F26.16

LOGICAL *2 L5
&[@ 03-27 A Formaft (Alphanumeric) rAw

Add the following before the example:

If w is omitted, then the width of the character string assumes the width of the variable list item, as

follows:

INTEGER *1 1 character
INTEGER *2 2 characters
INTEGER *4 4 characters
REAL *4 4 characters
REAL *8 8 characters
CHARACTER 1 character
string’ length of string

pp 03-38 3.4.7 Explicit Type Declarations
Change the statement ... fype is one of the four declarations ... to:

where: fype is one of the following six declarations:

INTEGER
REAL
DOUBLE PRECISION
| LOGICAL
. COMPLEX
CHARACTER

Add the following after the statement ... LOGICAL *2 - two bytes (default...:

COMPLEX *8 - eight bytes (same as COMPLEX)
COMPLEX *16 - sixteen bytes
CHARACTER - one byte (same as INTEGER *1)

PP 03-39; Seciion 3.4.8 IMPLICIT Statement
Change the statement ... fype is one of the four declarations... to:
type is one of the six declarations:

INTEGER

REAL

DOUBLE PRECISION
LOGICAL

COMPLEX
CHARACTER

Add the following after the statement ... LOGICAL *2 - two bytes ... :
OMPLEX *8 - eight bytes (same as COMPLEX)

OMPLEX *16 - sixteen bytes
CHARACTER - one byte (same as INTEGER *1)

.i g@ ‘o £ e e o

_Library, the ML (Math) Library, and the

pp 03-45 FUNCTION Subprogram
Change the statement .. Hpe is optional and is one of the specifications... to:

type is optional and one of the specifications INTEGER, REAL, DOUBLE PRECISION,
LOGICAL, COMPLEX, or CHARACTER

Add the following after the line ... LOGICAL *2...:
COMPLEX 8
COMPLEX *16
pp 0848, Section 3.5.6 Library Sulbprograms
Change the statement ... The subprograms are included ... to:
The subprograms are included in four ngplied libraries, the FL (FORTRAN) library, the GL (Graphics)
(Complex Math) Library. '
pp 0848, Section 3.8.1 Program Steftement
Add the following note at the end of the section:

The program name MUST be specified if using the symbolic debugger. It also MUST be the .
statement of the program (i.e. not preceeded by comment lines) for the debugger to work properly.

pp 04-5, Sectlion 4.4 Allocelion Mep

fCﬂange the table of letters vs. allocation types in COMMON area and in the Local Data Area to the
ollowing:

k - INTEGER *1 i-INTEGER *2
j - INTEGER *4 r- REAL *4

d - REAL *8 ¢ - COMPLEX *8
e - COMPLEX "16 |- LOGICAL *2

PP 056, Section 5.1.5 Linker Errors
Change the statement under "IMO Error" starting with ... Possible causes include ... to:

The cause is a non-object (source or other) module being loaded.

pp 068-10, Section 6.5.83 Remove/Add Breakpolnts

Add the following at the end of the "Breakpoint Execution" section:

In the MDOS version of the debugger, whenever a breakpoint is encountered, 1he first 64 bytes of the
program area (locations 0 to 3f) are checked. These locations are used by MDOS, if your program
should overwrite any of these locations (typically location 0), then errant program execution including
lockups of the GENEVE computer could occur.

**Critical Location @xxxx has been corrupted;
Incorrect Value = aaaa, should be = bbbb.
Shall | fix location (Y/N)?

.Answer Y and enter if you want the debugger to correct the location. If your application program ac-
tually modifies the location, then answer N and enter, and the debugger will assume from this point on
that the modified value is the correct value.

Pp 06-16 Inspect or Change WB, PC, or SR
Add the following statement to the end of the section:

In the MDOS implementation, the Program Counter (PC) display shows the current module, program
line number, and FORTRAN label, as follows:

PC = hloc module, %line, *label
For example;
PC =A362 TESTPROGA, % 64, * 1200

would specify that the current breakpoint is at hexadecimal location A362, in module TESTPROGA, at
line number 64, and FORTRAN labei 1200.

pp 07-01, Seclion 7.0 Intreduction
Following statement in paragraph 7 on page 7-1 which starts out with:
Therefore it is most efficient to reference the FL library FIRST...
.should read:

Therefore it is most efficient to reference the ML library FIRST...

PR 07-2; Sectien 7.0 Introductien
Modify the statement ... Three libraries are supplied... to:
Four libraries are supplied for your use. They are:

FL - Main FORTRAN library

ML - Single and Double Precision Math Library
CL - Complex Math Library

GL - Graphics Library

Change the last sentence in the ML library description as follows:

Therefore you MUST reference the ML library FIRST, followed by the FL library.

Add the following paragraph describing the CL library:

The CL library contains COMPLEX *8 and COMPLEX *16 mathematical functions, such as CSIN,

CCOS, CLOG, CDSIN, CDCOS, CDLOG, etc. You will only need to reference this library if you make
ference to one of these higher math routines. Note that the CL library makes reference to several

utines in the ML and FL libraries. Therefore you MUST reference the CL library FIRST, followed by
the ML library and then the FL library. _

(F'ienezal outine Definition No. Arq,ument sult | Inline?
unction ame Arguments ype ype
Complex CMPLX Ya- a+jb 2 R C
'cl':ype DCMPLX (Real to Cmplx) D E
onver-
sions CONJG é- a g , 1 C C
DCONJG (Cmplx Con- E E
jucate)
REAL y=a+ FJO 1 C R
DREAL (Real Fart) E D
AIMAG y=0+jb 1] R
DIMAG (Im%gary E D
Complex [CABS y=abs{x) 1 c R
Abs Val CDABS E D
Complex CSQRT y=x""0.5 1 C C
. Sq Root CDSQRT E E
Complex CLOG y=In(x) 1 C C
Logarithm CDLOG E E
Complex CSIN sine(x) 1 C C
Trigono- CDSIN E E
metric CCOS cosine(x) C C
Functions |[CDCOS E E
Complex CEXP 1 c Cc
Fx onen- ICDEXP y=exp(x) E E
ia
-rlr-wne ﬁgo- %RF@IIN arc-sine(x) 1 E E
Functions |CDASIN . E E
CARCOS arc-cosine(x) 1 C C
CDACOS E E
CATAN arc-tangent(x) 1] C
CDATAN E E
Complex CSINH hyperbalic- 1 Cc C
Hyperbolic |CDSINH sine (x) E E
Fdnctions CCOSH hyperbolic- 1 C C
CDCOSH cosine(x) E E
CTANH hyperbaolic- 1 C C
CDTANH tangent(x) E E
SASNH 2?@’2.’.?8{&3‘ ‘ E £
CACOSH hyperbolic- 1 C C
CDACSH arc cosine(x) E E
CATANH | hyperbolic-, 1 c c

pp 07-8, Section 7.1.1: ‘
Add note at end of section 7.1.1:

When file names are interactively enfered from the CRT, then the end of the list is indicated by typing
the line >EOD. For example, given a command file of CRT, the following would input files
HDS1.0BJ4, DSK2.CSIN:

HDS1.0BJ4

DSK2.CSIN
>EOD

pp 07-10, Sectien 7.2:
Add the following complex intrinsic library functions:

pp 07-14, section 7.3.5 GALL BREAD/BWRITE (MDOS Only)

The latest MDOS documentation indicates the file information header is 20 bytes long, not 18 bytes.
hange the statement: .

It should be at least 18 bytes long....
to:
It should be at least 20 bytes long...
(under no_sectors). Also change the example to:
G) a0
call bread (filename, 0, 0, filehdr, error)
PP 07-21; section 7.4.13 CALL CMDSTR
Change the calling sequence to the following:
Calling Sequence:
CALL CMDSTR (array [,ierror])
where:

array is an integer *1 array of which the first byte is the length-1 of the array, and the
. remaining bytes will contain the command line string on return,

ierror is an optional integer *2 variable which will be set to zero if the command was returned
into the array, it will be set to -1 if the command line exceeded the length of the array.

pPp 07-34; sections 7.3.6 and 7.3.7

Add the following new sections describing new utilities for MDOS:

7.3.6 CALL FORMAT (MDOS Only)

The FORMAT subroutine is called to FORMAT a floppy disk. It calls the MDOS utility to FORMAT
the number of sectors specified.

calling sequence: |
call format (file, tracks, skew, interlace, density, sides, sectors, error)
where:
file . is an array which contains the name of the device to format (e.g. DSK1.)

tracks : is a one word integer variable which is the number of tracks per side to format
(usually 40 or 80)

. skew : is a one word integer variable which is the desired skew setting (e.g. 2)

interlace: is a one word integer variable which is the desired interlace (e.g. 1 for 1:1i

density : is a one word integer variable which is the desired disk density (e.g. 2 for double

density) .

sides (ijs a énln;e word integer variable which is the number of sides to format (1 for single, 2 for
ouble

~sectors : is a one word integer variable which contains the number of formatted sectors

error . is a one word integer variable which will be setto zero if there is no error formatting
the floppy, if non-zero an error occurred.

For example, the following will format the floppy disk in drive DSK1., for 40 tracks, a skew of 2,
an interlace of 1, single density, double sided. It prints the number of formatted sectors when done.

call format ('DSK1.°, 40, 2, 1, 1, 2, isectors, ierror)
print *,isectors,’ formatted, error is ’,ierror

Note that after the floppy disk has been formatted, the first sector requires initialization of the floppy
game aénd other information; and the second sector requires to be zeroed before the floppy disk can
e used.

7.3.7 CALL CREATD (MDOS Only)

The %_REATD routine is used to create a directory on the hard disk (or extended floppy disk) device
specified.

calling sequence: _ . ‘
CALL CREATD (directory, error)

where:
directory : is an array which contains the directory specification. It MUST be terminated with
a period.
error . is a one-word integer variable which will contain any error returned.

For example, the following will create the directory TEMPA' on the hard disk HDS 1:

character directory(12

data directory / 12HHDS1.TEMPA. /
call creatd (directory, ierror)

print *,'directory created, error=',ierror

pp 0722, Section 7.5.1
Add the following to the discussion of character value, sprite colot, dot row, and dot column:
character valueis a one word integer variable or constant which contains the character number'

associated with the sgrite. This number can vary from 128 to 255 (in TI-99/4A GPL mode) or
from 0 to 255 (in MDOS mode).

LA AN

, . color, from 1 to 16. In sprite mode 2, the sprite coloris an eight word array, each word
contains a number from 1 to 16 defining the sprite color for each horizontal line in the sprite.

dot row and dot column are one word integer variables or constants which specify the starting
row and column of the sprite. Dot row can vary from 1 to 192 (top and bottom) in TI-99/4A

‘ GPL mode or from 1 to 208 in MDOS modes 2, 3 and 4 (graphics modes muiticolor, 1 and 2; or
sprite mode 1) to 216 in MDOS mode using modes 5, 6, 7, 8 or 9 (sprite mode 2). Dot column
can vary from 1 to 255 (left to right) regardiess of graphics mode.

Correct the first example as follows:

call spchar (128, Z'fffffffffffif)
call sprite (1, 128,5,2,1,24)

Add the following example of sprite mode 2:

integer colors(8)
datacolors/ 1,3,5,7,9, 11,13, 15/

call setmod(9)
call clear
call spchar (128, z'f0f0f0fof0f0f0f0’)
call sprite (1, 128, colors, 2, 1, 24)
The above example sets the current screen mode to 9 (graphics mode 7), clears the screen, defines
a sprite character number 128, and defines a sprite using that sprite character and the colors defined
in the "colors" array. .
p 07-23, Seclion 7.5.2;
Add the following to the discussion of character code in CALL SPCHAR:
character code is a one word integer variable or constant which contains the sprite character
number to modify, from 128 to 255 (in TI-99/4A GPL mode) or 0 to 255 (in MDOS mode).
pp 07-35, Seciion 7.9.3:
Add the following text to the discussion of IRAND:

The random number returned can be randomized by calling the CALL RANDOM subroutine. For
example,, the following will produce a set of non-repeating numbers upon each program execution:

CALL RANDOM
DO 100 I=1,100
Y = IRAND (10)

PRINT *Y
100 CONTINUE

pp 07-39; Section 7.10.1
Change the statement:
‘om 0 to 3 (TI-99 GPL mode), as follows:
to:
from 0 to 4 (TI-99 GPL mode), as follows:

Also, add the notes concerning TI-99/4A mode 4 usage (BITMAP mode): .
When usinE CALL SETMOD(4) in TI-99/4A mode, you must precede the CALL SETMOD(4) statement
with a CALL FILES(1) statement. This is because VDP RAM is at a premium when using

SETMOD(4). Also, it is not possible to use the debugger when using bitmap mode 4, and text display
output is possible, but normal screen scroll functions are not.

pp 07-44, Section 7.10.10

Remove notation for MDOS ONLY. CALL SETPIX is now available with the T1-99 and mode 4
(graphics mode 2).

Also, in graphics mode 2 under TI-89/4A, the color is specified as a number from 11to 16, where 1 is
transparent and 16 is white.

pp 07-45, Sectlon 7.10.11

Correct section numbering (from 7.9.11 10 7.10.11). Also, remove notation that this routine is available
under MDOS only; it is also available in TI-99/4A graphics mode 2 (set mode 4).

PP 0748, Section 7.10.12

Remove notation for MDOS ONLY. CALL SETVEC is now available with the T1-99 and set mode 4
(graphics mode 2). , -

Also, in graphics mode 2 under TI-99/4A, the color is specified as a number from 11to 16, where 1is
transparent and 16 is white.

PR 07-47, Section 7.10.14:
Corrected Calling Sequences:

CALL HBLKMYV (row_uls, col_uls, row_uld, col_uld, norow, nocol, color)
CALL HBLKCP frow uls, col_uls, row_uld, col_uld, norow, nocol)

CALL LBLKMYV (row_uls, col_uls, row_uld, col_uld, norow, nocol, color, logic)
CALL LBLKCP (row_uls, col_uls, row_uld, col_uld, norow, nocol, logic)

In addition, the valid values for " ogic*' are:

IMP DC=SC

AND DC=SC*DC

OR DC=SC+DC

EOR DC=ISC*DC+SC*!DC

TIMP i 3C=0 then DC=DC else DC=SC

TIAND if SC=0 then DC=DC else DC=SC*DC

10 TOR if SC=0 then DC=DC else DC=SC+DC

11 TEOR if SC=0 then DC=DC else !SC*DC+SC*IDC

12 TNOT if SC=0then DC=DC else DC=!SC ‘

whére:

WOCOWN 2O

DC = Destination Color

o

pp 07-57, section 7.12.2
The calling sequence for MALLOC is incorrect. The corrected sequence is:

CALL MALLOC (nopages, spage, speed, error, noapages, nofpages)

pp 07-59, section 7.13 Extended Graphics Library
Add the following new section to the manual:
7.13 Extended Graphics Library

;I‘he {_ollowing routines are available through Public Domain as an extended graphics library of
unctions.

Two routines are currently provided, a CIRCLE drawing subroutine originally coded by J. Syzdek (for
assembly), and two subroutines to move pixel data between CPU and Video RAM.

7.13.1 CALL CIRCLE

CALL CIRCLE plots a circle on the screen, given the center x coordinate, the center y coordinate, the
radius (in pixels), and the color code. This routine is available under MDOS and also under TI-99/4A
set mode 4 (graphics mode 2).

Calling Sequence:

MDOS Form:
. - CALL CIRCLE (center_x, center_y, radius, color)

TI-99/4A Form(graphics mode 2):
CALL CIRCLE ? center_x, center_y, radius [,fore_color] [,back_color])

where:

center_x :is a one word integer variable which is the x pixel coordinate,

center_y . is a one word integer variable which is the y pixel coordinate,

radius : is a one word integer variable which is the radius of the circle in pixels

color : is @ one word integer variable which is the color code to make the circle.

fore_color :is a one word integer varaible which is the foreground color for the circle

I-99/4A mode only), a number from 1 to 16.

back_color : is a one word integer variable which is the background color for the circle

(T1-99/4A mode only), a number from 1 to 16.

For example, the statements:

call setmod (9%
call circle (25, 28, 20,7)

will set the screen mode to 9 (graphics mode 7) and create a blue circle at coordinates 25,28 of radius

20 %? Lhe upper left hand corner of the screen in MDOS mode. An equivalent for TI-99/4A mode
might be:

. call files(1)
call setmod(4)
call circle (25, 28, 20, 5, 2) ! blue on black background

7.13.2 CALL LMMC/CALL LMCM (MDOS Only)

The LMMC and LMCM routines perform logical moves of pixels from Video RAM (VRAM) memory‘
CPU Memory (LMCM), and from CPU Memory to Video Memory (LMMC).

Calling Sequence:

CALL LMCM (x_coord, y_coord, dots_x, dots_y, direc_x, direc_y, array, bytes_xfered)
CALL LMMC (x_coord, y_coord, dots_x, dots_y, direc_x, direc_y, array, bytes_xfered][, logic])

where:

x_coord': its % o1ne word integer variable which specifies the starting pixel coordinate, from 0
0511,

y coord. its a ggg word integer variable which specifies the starting pixel coordinate, from 0 t
0 1023,

aofs_x . is a one word integer variable which is a value from 0 to 511, and is the # of pixels in
the x direction comprising the window,

dofs_y : is a one word integer variable which is a value from 0 to 1023, and is the # of
pixels in the y direction comprising the window,

direc_x: is a one word integer variable, and is set to 0 for transfer in the right direction, and 1
for transfer in the left direction,

direc_y: is a one word integer variable, and is set to 0 for transfers in the down direction, a.
1 for transfers in the up direction,

array . is a FORTRAN array that will contain the pixel values,

bytes_: is a one word integer variable which will contain the number of bytes of data actually
xferred transferred, and

logic (is at 'onel;rvord integer variable which is the logic operation to perform (0, just copy)
optiona

This routine is only callable in graphics modes 4, 5, 6, or 7. The upon execution of the routine CALL
LMCM, the array will contain a packed array of color pixel values, packed into bytes according to the
graphics mode, as follows:

graphics mode 4,6 : two pixels/byte
graphics mode 5. four pixels/byte
graphics mode 7: one pixel/byte

For example, the following will transfer an array of 10,000 pixel elements from a window at
coordinates 50,80, and of size 200, 100.

integer *1 pixels

common pixels(10000)

call setmod(8) I graphics mode 6
call Imcm(50,80,200,100,0,0,pixels,notrans) .

The following statement will transfer the pixel array back to the video ram screen:

call Immc¢(50,80,200,100,0,0,pixels,notrans)

" pp 091 Utiiitdes

The utilities package has been extended considerably over the description in the manual. Please
‘fer to the following rewritten utilities documentation:

9.0 UTILITIES (TI1-99 GPL ONLY)

The UTILITIES program (item 9 on the 99 FORTRAN menu) provides several functions which
enhance the usage of 99 FORTRAN, including:

a. A preferences package, which allows you to modify 99 FORTRAN parameters to your
individual tastes,

b. A method to do a disk directory without exiting the 99 FORTRAN environment,

c. A transform utility which transforms downloaded files in display/fixed/128 format to
display/fixed/80 or display/variable/80,

d. A method to save the modified preferences to disk (create new boot image&and to create
a standalone editor/assembler option 5 (Load & Run) program from your FORTRAN
program.

When item 9 is selected on the FORTRAN main menu, then four files are loaded into main memory
and the following menu is displayed:

99 Utilities V4.41
Press:

‘ 1 To Modify Preferences
2 Do Disk Directory
3 Transform a File
4 Create New Menu
5 Exit

Press the number key associated with the function you wish to perform.
9.1 Modify Preferences

Item 1 on the Utilities MENU allows you to modify various parameters in the 99 FORTRAN MENU to
suit ?/our configuration or individual tastes. When this item is selected, the following screen is

displayed:
Preferences
>Reload CharSet on Reset. Y
Default # Files to Open. 3
Number of Lines/Page ... 56
32/40/80 Columns 40
Count for Cursor Blink . 200
Memory Model E/A
Background Color LIG BLUE
Foreground Color WHITE
Character for Cursor ... 5F
. Default Label for Printer 9

Terminating Printer Char 0A
Wild Card Label Binding 6

BOOT Disk Name: DSK.FORTCOMP.
Printer: .

and the cursor will be positioned to tlas "Reload CharSet" column. To change a setting, merely enter
the new number. To leave the setting alone, then just press enter to skip to the next entry.

9.1.1 Reload CharSet on Reset
This entry defines whether the MENU program will reload the standard character set in GPL on

startup and every program exit. You may not want MENU to reload if you are running with a custom
character set.

Also, if you answer N, then all acces{ to GPL from 99 FORTRAN are bypassed (possibly useful if you
are using a substitute GROMenvironment, and also useful if you want to run this program under
MDOS using the EXEC program).

Press the "1" key to toggle the entry from Y to N (Yes to No).
9.1.2 Default # Files to Open

This is the default number of disk files to open. Setting this number higher will allow your FORTRAN
program to open more disk files, without calling the CALL FILES subroutine.

Enter a number from 1to 9, or ENTER to skip.
9.1.3 Number of Lines/Page '

This parameter tells the comFiIer and the EDITOR how many lines there are per printer page. The
default is 56, which is normal for 6 lines/inch, 8 1/2" by 11" paper.

9.1.4 32 or 40 or 80 Column Default

This parameter defines how many columns there are per screen line. The normal is 40. Usage of 80
%Jlumns requires either a Mechtronics, DIGIT, 80-column card or a MYARC GENEVE. The default is

Press key "1" to toggle to the next selection (32/40/80). CAUTION: Do not leave this parameter in
80-column mode if you do not have 80-column hardware; otherwise console lockups will occur.

9.1.5 Count for Cursor Blink

This parameter is the delay time between cursor blink. The normal value for proper TI-99 operation
is 200. A good choice for use with a 1YARC GENEVE at speed 5 is 500. The defauit is 200.

Enter a number between 1 and 999. The higher the number the slower the blink rate.
9.1.6 Memory Model

The Memory Model parameter describes how the editor, the compiler, and the debugger use the
memory locations between >6000 and >71ff. Thereare three choices:

E/A . Editor Assember Cartridge .
MINI-MEM . Mini-Memory Cartridge
SUPER-CA : Super-Cartridge (or MYARC GENEVE)

ThaAa CIA rnalantian Ainallan Anannn Aflanatiana «ONNAN A W76 Tiha MIANI MERMM Anlantian Allasan

memory between >6000 and >7fff.

If you are running with a memory dameon (e.g. BATCH-IT), you may want to disable via this selection
the memory you are using for the dameon.

9.1.7 Background/Foreground Colors

This selection allows you to define the background (screen) color and the foreground (character) color.
The default is white (foreground) on a blue background. When this item is selected, the following is
displayed on the bottom of the screen:

Press 1 to Toggle Foreground
2 to Toggle Background

Press the number “1" key to change to the next background color. Depress the number “2" key to
change to the next foreground color. The screen and character colors, as well as the text describing
the color, will chan%e in response to pressing item 1 and 2. When you are satisfied with the color com-
bination, press ENTER to exit.

9.1.8 Character for Cursor

This parameter defines the hexadecinal ASCIl code for the cursor character. The default is z’5f’, or
the underscore.

*_;%.9 1.8 Default Label for Printer

When your FORTRAN program is started, the PRINTER device as specified by the PRINTER name is
opened for write access. It is bound to this FORTRAN unit number. The default number for this unit is
9.

9.1.10 Terminating Printer Character

If you use the wild card (asterick - *) for FORTRAN READ AND WRITE statements, this parameter de-
fines the actual FORTRAN device number to be used. It defaults to 6 (the CRT device), but can be
changed to match the Printer Unit Number (9) or any other unit number.

9.1.11 BOOT Disk Name

The BOOT Disk name defines the name which is prepended to the file name when an item is selected
from the FORTRAN Main MENU, or when a file name is entered without a specific drive designation.
The default is:

DSK.FORTCOMP.

If you keep the BOOT disk in one particular disk drive all of the time, or perhaps use a RAM disk, it
would be worthwhile changing the name to that of the disk drive, e.g.:

DSKS.

If you have a MYARC HFDC Hard Disk, you will probably want to create a directo?/ on the hard disk
for all of the FORTRAN disks. For example, if you create a directory of HDS1.FORTCOMP,, and copy
all of the FORTRAN files there, you could enter the name of:

The OPEN routine (e.g. CALL OPEN) in 99 FORTRAN also prepends this file name to any file '
which is not given a sgecific drive designation. For example, if you place your libraries ML, FL, a
GL in the FORTCOMP directory, you could reference them in the linker just by typing the names:

ML
FL
GL

instead of typing the full path names:

HDS1.FORTCOMPML
HDS1.FORTCOMP.FL
HDS1.FORTCOMP.GL

9.1.12 Printer

When your FORTRAN Program is started, a PRINTER device is opened for WRITE access. The
name of the printer device opened ix specified here. The default is blank (no printer). Some
typical printer names which might go here are:

PIO
RS232/1.BA=4800.LF

9.1.13 Using Preferences
At the end of the preferences selection, you will be asked: ‘
Shalf | use Freferences (Y/N)7? '

To use the selected preferences, press ¥ To ignore the preferences, press A/

Note that the preference selection will only be kept until you reboot, unless you save the menu
using item 4, Create New Menu.

9.2 Disk Directory

The disk directory item provides a list of a selected disk drive or hard disk directory. When item 2
is selected from the utilities menu, the prompt:

Disk Directory
Enter Device Name (e.g. DSK1.)

Enter the name of the drive you want to catalog, or a hard disk directory name. The following are
examples of several disk directory names:

DSK1.
DSKS.
HDS1.FORTCOMP.

The disk directory displays the current drive device name, the formatted disk name, the number of
sectors available and used. It displays for each file the file name, the size in sectors, the type of
file, and whether the file is protected or not.

- 9.3 Transform File

display/variable/80 or display/ixed/80.

ASCIl and BINARY files transferred from other machines do not contain a “TIFILES" header which
tells FASTEAM and TELCO what type of file it is. FASTEAM and TELCO create a file in DIS- .
PLAY/FIXED/128 format.

Transform takes the display/fixed/128 file and "unpacks" the file, and places it in the proper format.
For display/variable/80, it also corrects <CA>and <LF>discrepancies, and detabs the file.

To use Transform, select item 3 on the utilities menu. The prompt:
99 Transform Utility
Enter Input File Name:
Enter the name of the file which is in display/fixed/128 format. The prompt:
Enter Output File Name:

will be displayed. Enter the name of the file which is to be created in display/variable/80 format or
displayffixed/80 format. The prompt:

Display/Variable/80 File (Y/N)?

Enter a Y if this file is to be created as a display/variable/80 file. Enter a N if this file is to be created
as a displayffixed/80 file.

The input file will be read and an output file created.

9.4 Creating New Menu
ltem 4 on the Utilities Menu allows you to:

a. Create a new "UTIL1" file which will contain your saved preferences; so when you reboot 99
FORTRAN your changes will be saved.

b. Create a standalone BOOT imag2 which can be used in conjunction with a linked 99 FORTRAN
program to create an E/A S loadable program.
9.4.1 Creating a New BOOT Image

item 1 on the MENU Image menu is to create a new UTIL 1 boot image file. This will replace the ex-
isting UTIL 1 file and the new file will contain your selected preferences.

When item 1 is selected, you will see the message:

Enter File Name to Save:
DSK.FORTCOMP.UTIL 1

The file name "DSK.FORTCOMP.UTIL 1" is dependent on what path name you specified in the Pref-
erences selection. If this is where you want the UTIL 1 file created, then press ENTER. If you want
to place the UTIL 1 file on another device, enter the full name, blank out any characters,

and press ENTER.

Chav avamnla ifuiniisirnnmtad A Aavaata A LITH 4 §ila A QK 14 vsnrssatnidd Aantav:

DSK1.UTILA (and 8 spaces to blank out MP.UTIL 1) .
and press the ENTER button.

9.4.2 Create Standalone Image

Item 2 is the most confusing item in the utilities. Creating a standalone image requires some knowl-
edge of how the Editor/Assembler creates item 5 “RUN PROGRAM FILE" programs.

When a 99 FORTRAN program is linked, it creates at least two executable files. These files are cre-
ated in normal E/A 5 format; but they are missing the snggort routines necessary to run as a stan-
dalone program. When the program is run from the 99 FORTRAN MENU page, the support routines
necessary are loaded in automatically when you select item 4 (Run) or item 5 (Run/Debug).

The “Create Standalone Ima%e“ creates a E/A 5 module which contains all of the support routines
necessary to support a FORTRAN program; complete with your desired preferences.

To use the “Create Standalone Image" item, first link your FORTRAN program to create a normal Tl-
99 executable file. Then create the “Standalone Image" with the same name as the executable
FORTRAN program, but with the last letter of the file name one letter less than the FORTRAN pro-
gram name.

An example is best here. Su;])_pose | want to create a standalone FORTRAN program called "KER-
MIT". | would link my 99 FORTRAN program and create executable modules as follows:

DSK 1.KERMIU
& - DSK1KERMIV | ®

| would then enter the “Utilities", and select item "4" Create New Menu, select item "2" Create Stan-
dalone Image, and enter a file name of:

DSK1.KERMIT
A standalone image file would be created on DSK1 called KERMIT.

Now to execute the program, call up the Editor/Assembler menu, select item 5 "Run Program File",
and enter the name of:

DSK1.KERMIT
Three files will be loaded (DSK 1.KERMIT, DSK1.KERMIU, DSK1.KERMIV), and your FORTRAN
program will be executed. When _Four rogram executes a STOP or CALL EXIT; then 99 FORTRAN
will return your program to the Tl Title Screen.
PP 0A-8; Section A.S Screen Organizations (T1-88 GIPL Only)
Add 80 column mode to the table as follows:

32 column 40 column 80 column Bit Mode
(graphics) (text) (text) (graphic 2)

Number of Rows: 24 24 24 24 .
Number of Columns: 32 40 80 32

Character Size: 8x8 6x8 6x8 8x8

Sprites Allowed? yes no no yes

Screen Image Table Address: 0-2ff 0-3at 0-77f 1800

Crrvita Adbvilhida | inds ann 978 " A) 4lnn

_

blitnbbblit Color Table: 380-400 n.a. n.a.
Sprite Descriptor Table: 400-77f na. n.a.
Sprite Motion Table: 780-71f n.a. n.a.
Character Pattern Table: 800-fff 800-fff 800-fff 0000

pp 0A-10, Section A.6.1 Subprogram Structure
Add the following to the end of section A.6.1:

If the function type is COMPLEX *8, then r5 and r6 must contain the real portion of the complex
number, and r7 and r8 must contain the imaginary portion, i.e.:

MOV @REAL1,R5
MOV @REAL2,R6
MOV @IMAG1,R7
MOV @IMAG2,R8

If the function type is COMPLEX *16, then r5,r6,r7,r8 must contain the real portion of the complex
number, and the eight byte area def'd as FACIM$ must contain the imaginary portion. For example:

REF FACIM$

MOV @REAL1,R5
MOV @REAL2,R6
MOV @REAL3,R7
MOV @REAL4,R8

LI R4,FACIMS
MOV @IMAG1,*R4+
MOV @IMAG2,"R4+
MOV @IMAG3,*R4+
MOV @IMAG4,"R4

pp 0A-11, Section A.6.2 Utilities
Remove the following entries from the address table:

DSKSS 20A4 Address of "Disk Type Devices" Table
Add the following entries to the utilities table:

GPLLNK 2084 Graphics Programming Language Interface
VRFR 205C Vdp Read Registers

Add the following entries to the useful address table:

MEMTYP 20A8 Memory Type (0=E/A, 1=MINIMEM, 2=SUPER-CA)
MENVDP 202C Last Location used in VDP RAM by MENU

MENU 2060 Menu Restart Entrance

PRTDOP 20A0 Address of Default Printer Name Start

PROGST A000 Start Address of a 99 FORTRAN program

LOGSTR A004 Logic Start Address (always >a000)

LOGEND A006 Logic End Address

DATSTR A008 Data Start Address

DATEND A00A Data End Address (COMMON Start)

Remove restrictions 1 (GPL environment) and 3 (uncomgressed object). 99 FORTRAN now
ports a GPL interface (GPLLNK) and also supports assembly language compressed object.

Add the following Appendices:
Appendix A.6 - Using PREDITOR with €8 FORTRAN

it is }Igossible to use the FPRED/TOR text editor from Asgard Software in conjunction with the 99

#: FORTRAN package. To call PRED/TOR directly from the FORTRAN MAIN MENU screen, you must

%% make a few simple “"patches" to PRED/TOR using a sector editor. Neither the sector editor or

. PREDITOR is provided with 99 FORTRAN; you can purchase FPRED/TOR from Asgard Software,

:ﬂnl? thé)re %(e l)'nany good sector editors available (e.g. part of the Advanced Diagnostics kit from
iller Graphics). .

There are four cells within the PRED/TOR program which must be patched, as follows (all values
are in hexadecimal):

1. Removing >2000 to >2fff from FRED/TOARworkspace: This patch shrinks the memory
block from >2000 to >3fff to >3000 to >3fff; so that the FORTRAN menu routines will not be
written over by FRED/ITOR.

The locations to patch are in the first sector:

Location Was Is

>0C >20 >30 R e : . o

>10 >20 >30 .
>14 >1F >0F

This reduces the memory block starting at >3000 to >ffc bytes.

2. The next location to patch forces a return to the FORTRAN MENU routine from FPA-
EDITOR. Currently, PRED/TOR using a GPL return mechinism through location >0070 in
memor1\g.h This is changed to branch to location >2060; which is the MENU restart entry

point. The sector to change is sector 3:
Location Was Is

>85 >00 >20

>86 >70 >60

g)n this patch, look for a >0460, >0070. This is a B @>0070 instruction, the return to the
t.PL)interpreter. Patch this as indicated above, and it will generate a B @>20860 instruc
ion).

After PREDITOR has been patched, copy the two PRED/TOARmodules PR and PS to the following
names on your BOOT disk:

PR becomes FORT48A
PS becomes FORT48B

\éoutt;an then select PRED/TORdirectly from the FORTRAN menu by selecting item 8 - USER .
outine. :

Appendix A-7 Discussion of BITMAP Craphics Mode

TI-99/4A GPL Mode

89 FORTRAN provides an interface to the 9918A graphic mode 2. Usin%gra hic mode 2, the
screen is organized as 256 pixels wide by 192 Fixels deep. Using the SETPIX subroutine, you can
turn on any pixel on the screen. Using the SETVEC subroutine, you can draw lines on the screen
given any two sets of x,y coordinates. Using the CIRCLE subroutine, you can draw circles on the
screen.

Note that squeezing bitmap mode into the 99 FORTRAN environment is a little difficult, due to the
shortage of VDP memory. To make room for the bitmap mode, you must preceed the setmod
statment which sets up the bitmap mode with a call files(1§)statement (meaning, of course, you can
only open a single floppy disk file from within your program).

For example:
call files(1) | free up vdp memory
call setmod(4) I set graphics mode 2

call screen(7,2) !set color black on red

If you do not use the call files(1) statement, you will get a FORTRAN execution error. While each
pixel on the screen is individually addressable, the color of each pixel is addressable in groups of
—eight horizontal pixels. For example: . B

col

POW 191 e,
Turning on the pixel at x=0, y=4 (row 0, column 4) using the statement:
call setpix (0, 4,7)

will cause the pixel noted with the asterick to be turned ON using color 7 (dark red) and if any of the
other pixels 0,0 through 0,7 are ON, will also change their color to dark red.

It is possible to skip setting the color of the pixel, i.e.:
call setpix (0, 4)

will }urn on the pixel at 0,4, withofit changing the currently defined colors -or the group of eight
pixels.

Other subroutines which are operative in the bitmap mode are call clear and call screen.

. Call clear clears the screen by turning OFF all of the pixels on the screen. The call screen
subroutine sets all of the colors in the color table to the requested color setting?s. If the foreground
color is not specified, the foreground color is set using the default foreground color from the
“preferences” utility.

A unique feature of the 98 FORTRAN setmod(4) is the text capability. You can write text to t
screen via normal FORTRAN write statements, i.e.:

call files(1) | free up vdp memory
call setmod(4) I set graphics mode 2
write (6, 9100) :

9100 format ('+’, m10.10, 'this is text’)

will write the text string 'this is text’ at row 10, column 10, as if you were in graphics mode 1. The
screen is organized for text mode as 32 columns wide by 24 rows deep. The following restrictions
apply to text mode in graphics mode 2:

- a. There is no scrolling, when the end of the page is reached, the invisible cursor is
positioned to the top of the page.

b. You cannot redefine the character set via CALL CHAR. You can redefine the ASCI|
character set before calling the SETMOD routine, i.e.:

call char (Z’'0030’, ZFOFOFOFOFOFOFOFOQ’)
call setmod (4)

would redefine the shape of the ASCII character '0’.
¢. You can only use the ASCII characters. If you write a character which is not defined in t

(normal)ASCII character set (from z'0020' to z'007¢"), it will be interpreted as a blank
space).

Several other restrictions of the bitmap mode are:
a. You cannot use the symbolic debugger (there just isn't enough RAM to run it!)

b. You cannot use sprites

MDOS Mode

Within MDOS, seven graphic modes are SLH)_POﬂed (graphics modes 1 through 7), two text modes,
and the multi-color mode. Since 9640 FORTRAN uses the MDOS Video XOPs whenever
possible, the concepts of paging are supported.

It is recommended to the serious user that the 9938 MSX-Video Data Processor User Manual be
purchased. This manual is currently the only source of information concerning the 9938 chip that
describes all 9938 video modes.

Since the 9640 FORTRAN Debugger uses its own video mode (80 column video) outside of
MDOS, any screen mode can be used within your FORTRAN program with the debugger.

* ok &

end of errata pages * * ¥ .

