
GENEVE

The

MYARC 9640

Family Computer

MYARC ADVANCED BASIC

Version 4.05

User's Manual
MYARC, Inc.

Basking Ridge, NJ

MYARC Advanced BASIC

COPYRIGHT

Copyright @1986 by MYARC, INC. All rights reserved. No part of
this publication may be reproduced without the written permission
of MYARC, INC., P.O. Box 140, Basking Ridge, NJ 07920

DISCLAIMER OF WARRANTY

MYARC, INC. makes no representation or warranties with respect
to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular
purpose. MYARC, INC. software is sold or licensed "as is."
The risk as to its quality and performance is with the buyer and
not MYARC, INC. Further MYARC reserves the right to revise this
publication and to make changes in the content hereof without
obligations of MYARC to notify any person of such revisions or
changes. MYARC also reserves the right to make design revisions or
changes without obligations of MYARC to notify any person of such
revisions or changes.

2

MYARC ADVANCED BASIC

MYARC Advanced BASIC

This Manual contains an alphabetical listing of all MYARC

Advanced BASIC commands, statements and functions with detailed
explanations on each. The Appendix Section provides significant
reference details that you will find necessary for effective
programming.

MYARC Advanced BASIC is totally upward compatible with MYARC
Extended BASIC II and with TI Extended BASIC so that you are
already familiar with nearly all the referenced commands,
statements, and functions.

In addition to many new commands, statements and functions that
were not in MYARC Extended BASIC II, MYARC Advanced BASIC

provides additional speed, power, flexibility, and/or
sophistication.

Several MYARC Extended BASIC II commands and statements are no
longer used in MYARC Advanced BASIC and many commands and
statements that were used in MYARC Extended BASIC II have been
revised and/or their descriptions modified to reflect the added
flexibility that the User now will have and can take advantage of
in MYARC Advanced BASIC.

To simplify I/O communication with external devices, a set of
default I/O commands has been added to MYARC Advanced BASIC. These
commands are described separately in the section "I/O Default
Commands".

Different from MYARC Extended BASIC II and TI Extended BASIC, in
MYARC Advanced BASIC the function "Break" is invoked by
simultaneously depressing both the Control and Break keys.
Accordingly wherever in this manual reference is made to "CLEAR",
press the two keys, CONTROL + BREAK.

WE RECOMMEND THAT YOU CAREFULLY
REVIEW THIS ENTIRE MANUAL BEFORE PROCEEDING
WITH ANY SERIOUS PROGRAMMING.

3

MYARC Advanced BASIC

James Franklin Uzzell

Founder of DDI Software and prolific programmer in Myarc Advanced Basic

It is with great honor we recognize the continued development of Advanced Basic and the updates he made

to the code and our understanding of the software until his passing in 2005. Without Jim, many MDOS

bugs would not have been found. And without Jim, the numerous updates to Advanced Basic that were

made would have never happened. Rest in Peace Jim. Your efforts were, and are, greatly appreciated.

Information from the TI-99’ers Hall of Fame at TI-99ers.ORG includes more detail than a snapshot of what

is presented below.

Doing business as DDI Software, Jim Uzzell provided some of the best and probably the most Myarc

Advanced BASIC software available for the Myarc “Geneve” 9640 computer. Jim’s efforts were good

enough to earn him two Jim Peterson Memorial Achievement Award nominations. The first nomination

came in 1998 for his MYBASIC 4.0 and then again in 2000 for his release of ABASIC 4.0. Jim also

identified and reported specific bugs he found within MDOS. Jim was widely considered to be the world

authority in Myarc Advanced Basic.

We honor Jim Uzzell, for his knowledge and comradeship and for his dedicated involvement in the circle

of support that surrounds the TI-99/4A / Geneve Community.

Biography prepared by Glenn Bernasek

with contributions from Jim Uzzell’s daughter, Sonya,

TI-99/4A and Myarc “Geneve” 9640 historian Bill Gaskill,

and DDI Software review by Charles Good

Inducted to the TI99ers Hall of Fame on November 24, 2005

4

http://ti99ers.org/hof/

MYARC ADVANCED BASIC

TABLE OF CONTENTS

COMMANDS, STATEMENTS and FUNCTIONS

ABS .. 9
ACCEPT ... 10
ASC .. 13
ATN .. 14
BCOLOR ... 14

BEEP ... 15
BREAK .. 16
BTIME .. 18
BYE .. 18
CALL ... 19

CHAR ... 21
CHARPAT .. 25
CHARSET .. 26
CHDIR .. 26
CHR$... 27

CINT ... 28
CIRCLE ... 29
CLEAR .. 30
CLOSE .. 31
CLS .. 32

COINC .. 33
COLOR .. 35
CONTINUE ... 37
COS .. 38
CREAL .. 39

DATA ... 40
DATA/DATE$... 42
DCOLOR ... 43
DEF .. 44
DEFvartype ... 46

DELETE ... 48
DELSPRITE .. 49
DIM .. 50
DISPLAY .. 52
DISPLAY USING .. 55

DISTANCE ... 56
DRAW ... 58
DRAWTO ... 60
ECOLOR ... 61
END .. 62
EOF .. 63

5

MYARC Advanced BASIC

ERR ... 64
EXP ... 66
FILES ... 67
FILL .. 68

FOR TO .. 70
FREESPACE ... 73
GCHAR ... 74
GPOINT .. 74
GOSUB ... 76

GOTO .. 78
GRAPHICS .. 79
HCHAR ... 82
HEX$.. 83
IF THEN ELSE .. 84

IMAGE ... 86
INIT .. 89
INP ... 89
INPUT ... 90
INT ... 94

JOYST ... 95
KEY ... 96
KILL .. 100
LEFT$... 101
LEN ... 102

LET ... 103
LINK .. 105
LINPUT .. 106
LIST .. 108
LLIST ... 110

LOAD .. 112
LOCATE .. 114
LOG ... 115
LPR ... 116
LPT ... 116

LTRACE .. 117
MAGNIFY ... 118
MARGINS ... 121
MAX ... 123
MEMSET .. 124

MERGE ... 125
MIN ... 127
MOD ... 128
MOTION .. 129
MOUSE ... 130
MYART ... 132

6

MYARC ADVANCED BASIC

NEW .. 132
NEXT ... 133
NUMBER ... 134
OLD .. 137

ON BREAK ... 138
ON ERROR ... 140
ON GOSUB ... 142
ON GOTO .. 144
ON WARNING ... 146

OPEN ... 148
OPTION BASE .. 151
OUTP ... 152
PALETTE .. 152
PATTERN .. 153

PEEK ... 154
PEEKV .. 156
PI ... 157
POINT .. 158
POKEV .. 159

POS .. 161
POSITION ... 163
PPT .. 164
PRINT .. 164
PRINT USING .. 169

RANDOMIZE .. 170
READ ... 171
REC .. 172
RECTANGLE .. 174
REM .. 176

RESEQUENCE ... 177
RESTORE .. 178
RETURN ... 180
RIGHT$... 182
RND .. 183

RPT$... 184
RUN .. 185
SAVE ... 187
SAY .. 189
SCHAR .. 190

SCREEN ... 190
SEG$... 192
SGN .. 193
SIN .. 194
SOUND .. 195

SPGET .. 198

7

MYARC Advanced BASIC

SPRITE .. 199
SQR ... 205
STOP .. 206
STR$.. 207

SUB ... 208
SUBEND .. 211
SUBEXIT ... 212
SWAP .. 213
TAB ... 214

TAN ... 215
TCOLOR .. 216
TERMCHAR .. 217
TIME/TIME$.. 218
TRACE ... 219

UNBREAK ... 220
VAL ... 221
VLHEX ... 222
VCHAR ... 223
VERSION ... 225

WEND .. 225
WHILE ... 226

I/O DEFAULT COMMANDS .. 227
ADVANCED BASIC LOADING OPTIONS 228

APPENDICES .. 229

Appendix A: List of Commands, Statements, and Functions 230
Appendix B: ASCII Code .. 232
Appendix C: Musical Tone Frequencies 234
Appendix D: Character Sets 235
Appendix E: Pattern-Indentifier Conversion Table 235
Appendix F: Color Codes ... 236
Appendix G: Mathematical Functions 236
Appendix H: List of Speech Words 237
Appendix I: Adding suffixes to Speech Words 240
Appendix J: Error Messages 246
Appendix K: Summary of Graphics Modes 251
Appendix L: Program Illustrating MOUSE Commands 252
Appendix M: Call Key ASCII Characters Chart 253
Appendix N: Abasic Assembly Support and other Information 256
Appendix O: Color Palette and Hexdecimal Charts 259
Appendix P: RS232 Info and OUTP example 260
Appendix Q: Disklayout-Floppy 262
Appendix R: Disklayout-Harddrive MFM Only 266

NOTES:

8

MYARC ADVANCED BASIC

ABS ABS

Format
ABS(numeric-expression)

Type
Numeric (REAL or DEFINT)

Description
The ABS function gives the absolute value of the numeric-expression.

If the value of the numeric-expression is positive or zero, ABS returns
its value.

If the value of the numeric-expression is negative, ABS returns its
negative (a positive number).

ABS always returns a non-negative number.

Examples

100 PRINT ABS(45.2)
PRINT ABS(45.2)
Prints 45.2

100 VV=ABS(-7.345)
VV=ABS(-7.345)
Sets VV equal to 7.345

9

MYARC Advanced BASIC

ACCEPT ACCEPT

Format

ACCEPT [[AT(row,column)] [BEEP] [ERASE ALL] [SIZE(numeric-expression)]
[INVERSE/BLINK] [CLIP] [VALIDATE(type[,...])]:]variable

Cross Reference
GRAPHICS, INPUT, LINPUT, MARGINS, TERMCHAR, BCOLOR, BTIME

Description
The ACCEPT instruction suspends program execution to enable you to enter data
from the keyboard.

The options available with ACCEPT make it more versatile for keyboard input
than the input statement. You can accept up to one line of input from any
position within the screen window, sound a tone when the computer is ready to
accept input, clear the screen window before accepting input, limit input to a
specified number of characters, and define the types of valid input.

ACCEPT can be used as either a program statement or a command.

The data value entered from the keyboard is assigned to the variable you
specify. If you specify a numeric variable, the data value entered from
the keyboard must be a valid representation of a number. If you specify
a string variable, the data value entered from the keyboard can be either
a string or a number. Trailing spaces are removed.

A string value entered from the keyboard can optionally be enclosed in quotation
marks. However, a string containing a comma, a quotation mark, or leading or
trailing spaces must be enclosed in quotation marks. A quotation mark within a
string is represented by two adjacent quotation marks.

You normally press ENTER to complete keyboard input; however, you can also
use Alt 7 (AID), Alt 9 (BACK), Alt 5 (BEGIN), CLEAR, Alt 6 (PROC'D), DOWN
ARROW, or UP ARROW. You can use the TERMCHAR function to determine which of
those keys was pressed to exit from the previous ACCEPT, INPUT, or LINPUT
instruction.

Note that pressing CLEAR during keyboard input normally causes a break in the
program. However, if your program includes an ON BREAK NEXT statement, you
can use CLEAR to exit from an input field.

Options
You can enter the following options, separated by a space in any order.

AT--Enables you to specify the location of the beginning of the input
field. Row and column are relative to the upper-left corner of the
screen window defined by the margins. The upper-left corner of the
window defined by the margins is considered to be the intersection of
row 1 and column 1 by an ACCEPT instruction that uses the AT option.
If you do not use the AT option, the input field begins in the far left
column of the bottom row of the window.

10

MYARC ADVANCED BASIC

BEEP--Sounds a short tone to signal that the computer is ready to
accept input.

.ERASE ALL--Places a space character (ASCII code 32) in every character
position in the screen window before accepting input.

SIZE--Enables you to specify a limit to the number of characters that
can be entered as input. The limit is the absolute value of the
numeric-expression. If the algebraic sign of the numeric-expression is
positive, or if you do not use the SIZE option, the input field is cleared
before input is accepted. If the numeric-expression is negative, the
input field is not cleared, enabling you to place a value
in the input field that may be accepted by pressing ENTER. If you do
not use the SIZE option, or if the absolute value of the numeric-
expression is greater than the number of characters remaining in the
row (from the beginning of the input field to the right margin), the
input field extends to the right margin.

VALIDATE--Enables you to specify the characters or the types of
characters that are valid input. If you specify more than one type, a
character from any of the specified types is valid. The types are as
follows:

TYPE VALID INPUT

ALPHA All alphabetic characters.

UALPHA All upper-case alphabetic characters.

LALPHA All lower-case alphabetic characters.

DIGIT All digits (0-9).

NUMERIC All digits (0-9), the decimal point (.),
the plus sign (+), the minus sign (-),
and the upper-case letter E.

You can also use one or more string-expressions as types. The
characters contained in the strings specified by the string-
expressions are valid input.

The VALIDATE option only verifies data entered from the keyboard. If
there is a default value in the input field (entered with DISPLAY),
for example, the validate option has no effect on that value.

New Options
CLIP--Using the CLIP option, the string represented in the "DISPLAY AT"
statement will be clipped at the end of a line rather than wrapping around
to the next line, as it does in the default mode. The CLIP option is
particularly useful when using "DISPLAY AT" within a window.

BLINK/INVERT--BLINK will cause the line displayed to BLINK on and off.
This is only available in GRAPHICS(3,1) mode.

11

MYARC Advanced BASIC

INVERT--Will cause the pixels in each character to invert their colors so
the foreground- and background-colors will be inverted. This is only
available in GRAPHICS(2,2), (2,3), (3,2), and (3,3) modes.

Examples

100 ACCEPT AT(3,5):Y

Accepts data at the third row, fifth column of the screen window into the
variable Y.

100 ACCEPT VALIDATE("YN"):R$

Accepts data containing Y and/or N into the variable R$. (YYNN would be a
valid entry.)

100 ACCEPT ERASE ALL:B

Accepts data into the variable B after putting the blank character into all
positions in the screen window.

100 ACCEPT AT(R,C)SIZE(FIELDLEN)BEEP VALIDATE(DIGIT,"AYN"):X$
Accepts a digit or the letters A, Y, or N into the variable X$. The length
of the input may be up to FIELDLEN characters. A field the length of FIELDLEN
is filled with blank characters, and then the data value is accepted at row R,
column C. A beep is sounded before acceptance of data.

Program

100 DIM NAME$(20),ADDR$(20)
110 DISPLAY AT (5,1)ERASE ALL:"NAME:"

120 DISPLAY AT(7,1):"ADDRESS:"

130 DISPLAY AT(23,1):"TYPE A ? TO END ENTRY."

140 FOR S=1 TO 20
150 ACCEPT AT(5,7)VALIDATE(ALPHA,"?")BEEP SIZE(13):NAME

$(S)
160 IF NAME$(S)."?" THEN 200
170 ACCEPT AT(7,10)SIZE(12):ADDR$(S)

180 DISPLAY AT(7,10):" ,.
190 NEXT S
200 CALL CLEAR

210 DISPLAY AT(1,1):"NAME","ADDRESS"
220 FOR T=1 TO S-1

230 DISPLAY AT(T+2,1):NAME$(T),ADDR$(T)
240 NEXT T
250 GOTO 250

(Press CLEAR to stop the program.)

12

MYARC ADVANCED BASIC

ASC ASC

Format
ASC(string-expression)

Cross Reference
CH$

Description
The ASC function returns the ASCII character code corresponding to the first
character of the string-expression.

ASC is the inverse of the CHR$ function.

The string-expression cannot be a null string.

Examples

100 PRINT ASC("A")
Prints 65 (the ASCII character code for the letter A).

100 B=ASC("1")
Sets B equal to 49 (the ASCII character code for the character 1).

100 DISPLAY ASC("HELLO")
Displays 72 (the ASCII character code for the letter H).

100 A$="DAVID"
110 PRINT ASC(A$)
Prints 68 in line 110.

13

MYARC Advanced BASIC

ATN ATN

Format

ATN(numeric-expression)

Cross Reference
COS, SIN, TAN

Description

The ATN function returns the angle (in radians) whose tangent is the value of
the numeric-expression.

The value returned by ATN is always greater than -pi/2 and less than

pi/2.

Examples

100 PRINT 4*ATN(-1)
Prints -3.141592654.

100 Q=PI/ATN(1.732)
Sets Q equal to 3.0000363894830.

BCOLOR BCOLOR

Format
CALL BCOLOR(foreground,background)

Cross Reference
BTIME, DISPLAY, ACCEPT

Description
This command is used to set the foreground- and background-colors of the BLINK
parameter used in conjunction with DISPLAY AT, ACCEPT AT and BTIME. The value
of foreground- or background-color is 1 to 16 as given in Appendix F. This
subroutine is applicable only to graphics 3,1 (Text 2) mode.

Example

100 CALL GRAPHICS(3,1)
110 CALL SCREEN(16,5)
120 CALL BCOLOR(16,7)
130 DISPLAY AT(5,1)ERASE ALL BLINK:"THIS IS BLINKING"
140 ACCEPT AT(5,1)BLINK SIZE(-28):A$

This program displays normal text in white with a dark blue background. The
display area on line 5 will blink and alternately be white text on a dark
red background and white text on a dark blue background.

14

MYARC ADVANCED BASIC

BEEP BEEP

Cross Reference
DISPLAY [AT], ACCEPT [AT]

Description
The BEEP command sounds a short tone when encountered as a command or
program statement. BEEP is also an option in DISPLAY AT and ACCEPT AT
commands.

You cannot use BEEP by itself as a program statement or as a command.

Example

100 CALL GRAPHICS(3,3)
110 DEFINT I,R,E
120 FOR I=1 TO 25
130 E=(437+I)-(RND*50)
140 R=(167+I)-(RND*50)
150 CALL PSET(RND*184,RND*480)
160 CALL DRAWTO(1,R,E)
170 DISPLAY AT(24,1)BEEP:R;E
180 FOR X=1 TO 1000::NEXT X
190 NEXT I
200 END

This program randomly selects the ROW COLUMN coordinates of 25 points
and draws lines connecting them. Each time a line is drawn the values of
ROW COLUMN are displayed in the left corner of screen and the BEEP sound
is produced.

15

MYARC Advanced BASIC

BREAK BREAK

Format
BREAK(line-number-list)

Cross Reference
CONTINUE, ON BREAK, UNBREAK

Description
The BREAK instruction sets a breakpoint at each program statement you
specify. When the computer encounters a line at which you have set a
breakpoint, your program stops running before that statement is
executed.

BREAK is a valuable debugging aid. You can use BREAK to stop your
program at a specific program line, so that you can check the values of
variables at that point.

You can use BREAK line-number-list as either a program statement or a
command.

The line-number-list consists of one or more line numbers, separated by
commas. When a BREAK instruction is executed, breakpoints are set at
the specified program lines. If you use BREAK as a program statement,
line-number-list is optional. When a BREAK statement with no line-
number-list is encountered, the computer stops running the program at
that point.

If you use BREAK as a command, you must include a line-number-list.

Breakpoints

When your program stops at a breakpoint, the message Breakpoint in line
number is displayed. While your program is stopped at a breakpoint, you
can enter any valid command.

To resume program execution starting with the line at which the break
occurred, enter the CONTINUE command. However, if you edit your
program(add, delete or change a program statement) you cannot use
CONTINUE. This prevents errors that could result from resuming
execution in the middle of a revised program. You also cannot use
CONTINUE if you enter a MERGE or SAVE command or a LIST command with
the file-specification option. Note that pressing CLEAR also causes a
breakpoint to occur before the execution of the of the next program
statement.

When your program stops at a breakpoint, the computer performs the
following operations:

It restores the default character definitions of all ASCII characters
from 33 thru 126.

It restores the default foreground-color and background-color to all
characters.

It restores the default screen color.

16

MYARC ADVANCED BASIC

It deletes all sprites.

It resets the sprite magnification level to 1.

The graphics colors (see DCOLOR) and current position (see DRAWTO) are not
affected. If the computer is in Pattern or Text Mode, the graphics mode and
margin settings remain unchanged.

Removing Breakpoints

You can remove a breakpoint by using the UNBREAK instruction or by editing or
deleting the line at which the breakpoint is set. When your program stops at a
breakpoint, that breakpoint is automatically removed.

All breakpoints are removed when you use the NEW or SAVE

command. BREAK Errors

If the line-number-list includes an invalid line number (0 or a value greater
than 32767), the message Bad line number is displayed. If the line-number-
list includes a fractional or negative line number, the message Syntax error
is displayed. In both cases, the BREAK instruction is ignored; that is,
breakpoints are not set even at valid line numbers in the
line-number-list. If you were entering BREAK as a program statement, it is

_not entered into your program.

If the line-number-list includes a line number that is valid (1-32767) but
is not the number of a line in your program, or a fractional number greater
than 1, the message

WARNING
LINE NOT FOUND

is displayed. If you were entering BREAK as a program statement, the line
number is included in the warning message. A breakpoint is, however, set
at any valid line in the line-number-list preceding the line number which
caused the warning.

Examples

150 BREAK
BREAK as a statement causes a breakpoint before execution of the next line in
the program.

100 BREAK 120,130
Causes breakpoints before execution of lines 120 and 130.

BREAK 10,400,130
As a command, causes breakpoints before execution of lines 10, 400, and 130.

17

MYARC Advanced BASIC

BTIME BTIME

Format
CALL BTIME(blinkrate-ON, blinkrate-OFF)

Cross Reference
BCOLOR, ACCEPT, DISPLAY

Description
This command is used to set the rate at which characters are set to BLINK in
the DISPLAY AT and ACCEPT AT statements.

Blinkrate can be an integer from 0 to 15, representing actual blink rates
between 0 and 2503.5 milliseconds in multiples of 166.9 milliseconds.

Example

100 CALL GRAPHICS(3,1)
110 CALL DCOLOR(15,5)
120 CALL BCOLOR(15,7)
130 FOR I=0 TO 15
140 CALL BTIME(I,I)
150 DISPLAY AT(5,1)ERASE ALL BLINK:"RATE OF BLINK= ";I
160 FOR DELAY=1 TO 1000::NEXT DELAY
170 NEXT I
180 END

The above program illustrates some of the possible blink rates.

BYE BYE

Format
BYE

Description
The BYE command resets the computer. Always use BYE to exit from MYARC
Advanced BASIC. The BYE command causes the computer to do the following:

Close all open files.

Erase the program and all variable values in memory.

Exit from MYARC Advanced BASIC.

Display the DOS command line.

18

MYARC ADVANCED BASIC

CALL CALL

Format
CALL subprogram-name[(parameter-list)]

Cross Reference
SUB

Description
The CALL instruction transfers program control to the specified
subprogram.

You can use CALL as either a program statement or a command.

 The CALL instruction transfers program control to the subprogram
specified by the subprogram-name.

 The optional parameter-list consists of one or more parameters
separated by commas. Use of a parameter-list is determined by the
subprogram you are calling. Some subprograms require a parameter-
list, some do not use a parameter-list, and with some a parameter
is optional.

You can use CALL as a program statement to call either a built-in MYARC
Advanced BASIC subprogram or to call a subprogram that you write. After
the subprogram is executed, program control returns to the statement
immediately following the CALL statement.

You can use CALL as a command only to call a built-in MYARC Advanced
BASIC subprogram, not to call a subprogram that you write.

Each of the following built-in subprograms is discussed separately in
this manual:

 BCOLOR ECOLOR LOAD PEEK SPRITE2
 BTIME ERR LOCATE PEEKV SPRITESET
 CHAR FILL LPR POINT STCR
 CHARPAT FILES MAGNIFY POKEV TCOLOR
 CHARSET GCHAR MARGINS POSITION TIME
 CIRCLE GPOINT MEMSET PSET VCHAR
 CLEAR GRAPHICS MKEY RECTANGLE VERSION
 COINC HCHAR MLOC RESETPLT
 COLOR HIDEMOUSE MOTION SAY
 DATE INIT MOUSEDRAG SCREEN
 DCOLOR INP MREL SEEMOUSE
 DELSPRITE JOYST MYART SCHAR
 DISTANCE KEY OUTP SOUND
 DRAW LDCR PALETTE SPGET
 DRAWTO LINK PATTERN SPRITE

Examples

CALL GRAPHICS(4)
CALL LINK("filename" [,parameters])
CALL RESETPLT

 9

MYARC Advanced BASIC

Program

The following program illustrates the use of CALL with a built-in
subprogram (CLEAR) in line 100 and the use of a user-written subprogram
(TIMES) in line 120.

100 CALL CLEAR
110 X=4
120 CALL TIMES(X)
130 PRINT X
140 STOP
200 SUB TIMES(Z)
210 Z=Z*PI
220 SUBEND
RUN
(SCREEN CLEARS)
12.56637061

CDBL CDBL

Format
CDBL=(numeric-expression)

Cross Reference
DEFtype, CINT, CSNG, CREAL

Description
Converts a number to double-precision. The numeric-expression must
evaluate to either an integer, or a single- or a double-precision value.

CAUTION: Mixed mode arithmetic is not allowed.

Arithmetic modes:
 REAL: Real numbers, and integers.

 Binary: Integers, single-precision, double-precision.

Mixing real numbers with either single- or double-precision will cause a
mixed arithmetic error.

THIS FEATURE NOT IMPLEMENTED.

20

MYARC ADVANCED BASIC

CHAR -Subprogram CHAR

Format

CALL CHAR(character-code,pattern-string[,...])

Cross Reference
CHARPAT, CHARSET, COLOR, DCOLOR, GRAPHICS, HCHAR, SCREEN, SPRITE, VCHAR

Description
The CHAR subprogram enables you to define your own characters so that you can
create graphics on the screen.

CHAR is the inverse of the CHARPAT subprogram.

Character-code is a numeric-expression with a value from 0 to 255,
specifying the number of the character (codes 0-255). You can define
any of the 256 characters and display them as characters and/or sprites.

The pattern-string specifies the definition of the character. The
pattern-string, which may be up to 64 digits long, is a coded
representation of the pixels that define up to four characters on the
screen, as explained below. Any letters entered as part of a pattern-
string must be upper case.

You can use the CHARSET subprogram to restore default character definitions of
characters 32-95 inclusive. Also, when your program ends (either normally or
because of an error), stops at a breakpoint, or changes graphics mode, all
default character definitions (0-255) are restored.

The instructions that you can use to display characters on the screen vary
according to the graphics mode. In all modes except Text Modes, you can use
the SPRITE subprogram to display sprites on the screen.

If you use HCHAR or VCHAR to display a character on the screen and then
later use CHAR to change the definition of that character, the result
depends on the graphics mode.

In Pattern and Text Modes, the displayed character changes to the newly
defined pattern.

In Bit Mapped Modes, the displayed character remains

unchanged. Graphics(1,X) Modes

In Graphics(1,1), (1,2), and (1,3) modes, each character is composed of 64
pixels in a grid eight pixels high and eight pixels wide, as explained below.

You can use the DISPLAY, DISPLAY USING, PRINT, and PRINT USING instructions and
the HCHAR and VCHAR subprograms to display characters on the screen.

21

MYARC Advanced BASIC

Other Graphics Modes

In Graphics(2,X) and (3,X), each character is composed of 48 pixels in a grid
eight pixels high and six pixels wide. The eight by eight grid described below
is used to define characters; however, the last two pixels in each pixel-row
are ignored.

In these modes, you can use the DISPLAY, DISPLAY USING, PRINT, and PRINT
USING instructions and the HCHAR and VCHAR subprograms to display characters
on the screen. You cannot display sprites in Text Modes.

Character Definition--The Pattern String

Characters are defined by turning some pixels on and leaving others off. The
space character (ASCII code 32) is a character with all the pixels turned off.
Turning all the pixels on produces a solid block, eight pixels high and eight
pixels wide.

The foreground-color is the color of the pixels that are on. The
background-color is the color of the pixels that are off. (For more
information see COLOR, DCOLOR, and SCREEN.)

When you enter MYARC Advanced BASIC, the characters are predefined with the
appropriate pixels turned on. To redefine a character, you specify which
pixels to turn on and which pixels to turn off.

For the purpose of defining characters, each pixel-row (eight pixels) is
divided into two blocks (four pixels each). Each digit in the pattern-
string is a code specifying the pattern of the four pixels in one block.

You define a character by describing the blocks from left to right and from
top to bottom. The first two digits in the pattern-string describe the
pattern for the first two blocks (pixel-row 1) of the grid, the next two
digits define the next two blocks (pixel-row 2), and so on.

The computer uses a binary (base 2) code to represent the status of each pixel;
you use hexadecimal (base 16) notation of the binary code to specify which
pixels in a box are turned on and which pixels are turned off.

The following table shows all the possible on/off combinations of the four
pixels in a block and the binary code and hexadecimal notation representing
each combination.

22

MYARC ADVANCED BASIC

BINARY CODE HEXADECIMAL
BLOCK (0=OFF; 1=0N) NOTATION

0000 0
—X 0001 1
X 0010 2
XX 0011 3
X 0100 4
X X 0101 5
XX 0110 6

-M 0111 7
X 1000 8
X X 1001 9
X X 1010 A
X XX 1011 B

XX 1100 C
XX X 1101 D
XXX 1110 E
XXXX 1111 F

A character definition consists of 16 hexadecimal digits; each digit
represents one of the 16 blocks that comprise a character. As the pattern-
string may be up to 64 digits long, you can define_as many as four consecutive
characters with one pattern-string.

If the length of the pattern-string is not a multiple of 16, the computer fills
the pattern-string with zeros until its length is a multiple of 16.

Programs

For the dot pattern pictured below, you use "1898FF3D3C3CE404" as the pattern
string for CALL CHAR. The following program uses this and one other string to
make a figure "dance". This example will work only in Pattern Mode.

100 CALL CLEAR

110 A$="1898FF3D3C3CE404"
120 B$="1819FFBC3C3C2720"
130 CALL COLOR(27,7,12)
140 CALL VCHAR(12,16,244)
150 CALL CHAR(244,A$)
160 GOSUB 200

23

MYARC Advanced BASIC

170 CALL CHAR(244,B$)
180 GOSUB 200
190 GOTO 150
200 FOR DELAY=1 TO 150
210 NEXT DELAY
220 RETURN
RUN
(screen clears)
(character moves)
(Press CLEAR to stop the program.)

To make this example work in a Bit-Mapped Graphics Mode, make the
following changes.

105 CALL GRAPHICS(2,2)
130 CALL DCOLOR(7,12)
140 CALL CHAR(144,A$,145,B$)
150 CALL VCHAR(12,16,144)
170 CALL VCHAR(12,16,145)

If a program stops for a breakpoint, all characters are reset to their
standard patterns. When the program ends normally or because of an error,
all characters are reset.

The following example works in all graphics modes.

100 CALL CLEAR
110 CALL GRAPHICS(X,Y)
120 CALL CHAR(144,"FFFFFFFFFFFFFFFF")
130 CALL CHAR(42,"0F0F0F0F0F0F0F0F")
140 CALL HCHAR(12,17,42)
150 CALL VCHAR(14,17,144)
160 FOR DELAY=1 TO 500
170 NEXT DELAY
RUN

The X and Y in line 110 must be replaced with the number of the graphics
mode to be designated.

24

MYARC ADVANCED BASIC

CHARPAT -Subprogram CHARPAT

Format
CALL CHARPAT(character-code,string-variable[,....])

Cross Reference
CHAR

Description
The CHARPAT subprogram enables you to ascertain the current character
definition of specified characters.

 Character-code is a numeric-expression with a value from 0 to 255,
specifying the number of the character of which you want the current
definition.

 The pattern describing the character definition is returned in the
specified string-variable. The pattern is in the form of a 16-digit
hexadecimal code. See CHAR for an explanation of the pattern used for
character definition.

See Appendix B for a list of avilable characters.

Example

100 CALL CHARPAT(33,C$)
Sets C$ equal to "0010101010001000", the pattern identifier for
character 33, the exclamation point.

25

MYARC Advanced BASIC

CHARSET -Subprogram--Set Characters CHARSET

Format
CALL CHARSET

Cross Reference
CHAR, COLOR

Description
The CHARSET subprogram restores default character definitions and colors.

CHARSET, restores the default character definitions to characters 32-
126, inclusive.

In Graphics (1) or (1,1), CHARSET restores the default colors to all 256
characters.

CHDIR CHDIR

Format
CHDIR path.filename

Cross Reference
FILES, PWD, KEY LIST

Description
This COMMAND allows you to change the default working directory.

Examples

From the prompt
 CHDIR DSKx.SUBDIR
 CHDIR HDSx.SUBDIR.SUBDIR

Typing PWD or KEY LIST from the prompt will display the working directory.

26

MYARC ADVANCED BASIC

CHR$ -Function--Character CHR$

Format
CHR$(character-code)

Type
String

Cross Reference
ASC

Description
The CHR$ function returns the character corresponding to the ASCII
character code specified by the value of the character-code.

CHR$ is the inverse of the ASC function.

Character-code is a numeric-expression with a value from 0 to 32767
inclusive, specifying the number of the character you wish to use. If
the value of character-code is greater than 255, it is repeatedly reduced
by 256 until it is less than 256. If the value of the character-code is
not an integer, it is rounded to the nearest integer.

Examples

100 PRINT CHR$(72)
Prints H.

100 X$=CHR$(33)
Sets X$ equal to !.

Program for a complete listing of all ASCII characters and their
corresponding ASCII values, run the following program.

100 CALL CLEAR
110 IMAGE ### ## ### ##
120 FOR A=32 TO 127
130 PRINT USING 110:A,CHR$(A);
140 NEXT A

27

MYARC Advanced BASIC

CINT CINT

Format
(numeric-expression=CINT(numeric-expression)

Cross Reference
DEFvaratype,CREAL

Description
Converts a number to integer precision.

CAUTION: mixed mode arithmetic is not allowed.

Arithmetic modes:
 REAL: real numbers and integers.

 BINARY: integers, single-precision, double-precision

Mixing real numbers with either single- or double-precision will cause
a mixed arithmetic mode error.

28

MYARC ADVANCED BASIC

CIRCLE -Subprogram CIRCLE

Format
CALL CIRCLE(line-type,pixelrow,pixelcol,radius)

Cross Reference
DRAW,DRAWTO,DCOLOR

Description
Draws an ellipse on the screen with center at pixelrow, pixelcol with a
defined radius.

COORDINATES OF CENTER SCREEN SIZE
 40 80
PIXELROW 1-192 X X
PIXELCOL 1-256 X
PIXELCOL 1-512 X
RADIUS 1-320 X
RADIUS 1-640 X

Example

CALL CIRCLE(1,98,128,160)

29

MYARC Advanced BASIC

CLEAR -Subprogram CLEAR

Format
CALL CLEAR

Cross Reference
DCOLOR, DELSPRITE

Description
The CLEAR subprogram erases the screen.

CLEAR places a space character (ASCII code 32) in every screen
position.

The CLEAR subprogram has no effect on sprites. Use the DELSPRITE
subprogram to remove sprites.

Programs

When the following program is run, the screen is cleared before the
PRINT statements are performed.

100 CALL CLEAR
110 PRINT "HELLO THERE!"
120 PRINT "HOW ARE YOU?"
RUN
--screen clears
HELLO THERE!
HOW ARE YOU?

If the space character (ASCII code 32) has been redefined by the CALL
CHAR subprogram, the screen is filled with the new character when CALL
CLEAR is performed.

100 CALL CHAR(32,"0103070F1F3F7FFF")
110 CALL CLEAR
120 GOTO 120
RUN
--Screen is filled with *
(Press CLEAR to stop the program.)

The following program first fills and then clears the entire screen.

100 CALL GRAPHICS(1,2)
110 CALL HCHAR(1,2,72,768)
120 FOR DELAY=1 TO 500::NEXT DELAY
130 CALL CLEAR
140 GOTO 140
RUN
(Press CLEAR to stop the Program.)

30

MYARC ADVANCED BASIC

CLOSE CLOSE

Format
CLOSE #file-number[:KILL], CLOSE ALL

Cross Reference
KILL, OPEN, DELETE

Description
The CLOSE instruction closes the specified file. When you close a file,
you discontinue the association (between your program and the file) that
you established in the OPEN instruction.

The KILL option is not allow without a specific #file-number. Use CLOSE
ALL to close all open files.

You can use CLOSE as either a program statement or a command.

 The file-number is a numeric-expression whose value specifies the
number of the file as assigned in its OPEN instruction.

 The KILL option, which can be used only with certain devices,
deletes the file after closing it. For more information about using
the KILL option with a particular device, refer to the owner's manual
that comes with that device.

After the CLOSE instruction is performed, the closed file cannot be
accessed by an instruction because the computer no longer associates that
file with a file -number. You can reassign the file-number to another
file.

Closing Files Without the CLOSE Instruction

To protect the data in your files, the computer closes all open files
when it reaches the end of your program or when it encounters an error
(either in Command or Run mode).

Open files are also closed when you do one of the following:

 Edit your program (add, delete, or change a program statement).

 Enter the BYE, MERGE, NEW, OLD, RUN or SAVE command.

Open files are not closed when you stop program execution by pressing
CLEAR(F4) or when your stops at a breakpoint set by a BREAK instruction.

Example

Diskette file
100 OPEN #24:"DSK1.MYDATA",INTERNAL,UPDATE,FIXED
200 CLOSE #24
RUN
The CLOSE statement for a diskette requires no further action on your
part.

31

MYARC Advanced BASIC

CLS

Format
CLS

Description
You may use CLS either as a program statement or a command.

CLS clears the screen or window created with the CALL MARGINS
statement, and returns the cursor
to the home position.

Examples

100 CALL GRAPHICS(2,1)
110 CALL MARGINS(1,24,1,40)
120 CALL HCHAR(1,1,ASC("A"),960)
130 CALL MARGINS(5,10,5,10)
140 CLS
150 CALL KEY(0,K,S)::IF S<1 THEN 150
RUN

Program will fill screen with character 65, the letter A, then it
creates a window 5 rows by 5 columns.
The CLS statement clears this window leaving the remainder of the
screen filled with the letter "A".

NOTE: An alternate method of clearing the active "window" in this case
would have been to substitute
line 140 with:

140 DISPLAY AT(1,1)ERASE ALL:""

CALL CLEAR or CALL GRAPHICS(n[n1,n2]) will clear the entire screen.

32

MYARC ADVANCED BASIC

COINC -Subprogram--Coincidence COINC

Format
Two sprites
 CALL COINC(#sprite-number1,#sprite-number2,tolerance,numeric-variable)
A Sprite and a screen pixel
 CALL COINC(#sprite-number,pixelrow,pixelcol,tolerance,numeric-variable)
All Sprites
 CALL COINC(ALL,numeric-variable)
 CALL COINC(ALL,numeric-variable,pixelrow,pixelcol)

Cross Reference
SPRITE

Description
The COINC subprogram enables you to ascertain if sprites are coincident (in
conjunction) with each other or with a specified screen pixel.

The exact conditions that constitute a coincidence vary depending on whether you
are testing for the coincidence of two sprites, a sprite and a screen pixel, or
all sprites.

If the sprites are moving very quickly, coinc may occasionally fail to detect a
coincidence.

Two Sprites
Two sprites are considered to be coincident if the upper-left of the sprites are
within a specified number of pixels (tolerance) of each other.

 The values of the numeric-expression sprite-number1 and sprite-number2
specify the numbers of the two sprites as assigned in the SPRITE subprogram.

 A coincidence exists if the distance between the pixels in the upper-left
corners of the two sprites is less than equal to the value of the numeric-
expression tolerance.

 The distance between two pixels is said to be within tolerance if the
difference between pixelrows and the difference between pixelcols are both less
than or equal to the specified tolerance. Note that this is not the same as the
distance indicated by the DISTANCE subprogram.

 COINC returns a value in the numeric-variable indicating whether or not
the specified coincidence exists. The value is -1 if there is a coincidence or
0 if there is no coincidence.

A Sprite and a Screen Pixel
A sprite is considered to be coincident with a screen pixel if the upper-left
corner of the sprite is within a specified number of pixels (tolerance) of the
screen pixel or if any pixel in the sprite occupies the screen pixel location.

33

MYARC Advanced BASIC

The sprite-number is a numeric-expression whose value specifies the number
of the sprite assigned in the SPRITE subprogram.

The pixelrow and the pixelcol are numeric-expressions whose values specify
the position of the screen pixel.

A coincidence exists if the distance between the pixel in the upper-left
corner of the sprite and the screen pixel is less than or equal to the
value of the numeric-expression tolerance. (Note that a coincidence also
exists if any pixel in the sprite occupies the screen pixel location).

The distance between two pixels is said to be within tolerance if the
difference between pixelrows and the difference between pixelcols are both
less than or equal to the specified tolerance. Note that this is not the
same as the distance indicated by the DISTANCE subprogram.

COINC returns a value in the numeric-variable indicating whether or not
the specified coincidence exists. The value is -1 if there is a
coincidence or 0 if there is no coincidence.

All Sprites
The ALL option tests for the coincidence of any of the sprites.

For the ALL option, sprites are considered to be coincident if any
pixel of any sprite occupies the same screen pixel location as any
pixel of any other sprite.

Also the ALL with a pixelrow,pixelcol option considers there to be a
coincidence if any sprite occupies the defined screen location of
pixelrow,pixelcol.

COINC returns a value in the numeric-variable indicating whether or
not a coincidence exists. The value is -1 if there is a coincidence
or 0 if there is no coincidence.

Program

100 CALL CLEAR::S$="0103070F1F3F7FFF"
120 CALL CHAR(244,S$)::CALL CHAR(250,S$)
130 CALL SPRITE(#1,244,7,50,50)
140 CALL SPRITE(#2,250,5,44,42)
150 CALL COINC(#1,#2,10,C)
160 PRINT C
170 CALL COINC(ALL,C)
180 PRINT C
RUN
-1
 0

Line 150 shows a coincidence because the upper-left corners of the sprites
are within 10 pixels of each other.

Line 170 shows no coincidence because the shaded areas of the sprites do
not occupy the same screen pixel location. (Shaded areas are compared only
if you specify the ALL option.)Do not use when MOUSE interrupts are on
(MOUSE ON).

34

MYARC ADVANCED BASIC

COLOR --Subprogram COLOR

Format
Pattern Mode
 CALL COLOR(character-set,foreground-color,background-color[,....])
Sprites
 CALL COLOR(#sprite-number,foreground-color[,....])

Cross Reference
CHAR, DCOLOR,GRAPHICS,PALETTE,SCREEN,SPRITE,TCOLOR

Description
The COLOR subprogram enables you to specify the colors of characters or
sprites.

The types of parameters you specify in a call to the COLOR subprogram
depend on whether you are assigning colors to characters or to sprites.

In general, each character has two colors. The color of the pixels that
make up the character itself is the foreground-color; the color of the
pixels that occupy the rest of the character position on the screen is
the background color.

When you enter MYARC Advanced Basic, the foreground-color of all the
characters is white; the background-color of all characters is blue.
These default colors are restored when your program ends (either normally
or because of an error, stops at a breakpoint, or changes graphics mode.

If a color is transparent, the color actually displayed is the color
specified by the SCREEN subprogram.

See Appendix F for a listing of available colors and their respective
codes.

Pattern Mode and Bit Mapped Modes

In these modes(i.e. Graphics(1,1),(2,2),(2,3),(3,2),(3,3), the 256
available characters are divided into 32 sets of 8 characters each. When
you assign a color combination to a particular set, you specify the
colors of all 8 characters in that set.

The character-set is a numeric-expression whose value specifies the
number (0-31) of the 8 character set.

Fore-ground-color and background-color are numeric-expressions
whose values specify colors that can be assigned from among the 16
available colors.

In the 256 color mode(2,2), the colors are 1-256. In the 4 color
mode(3,2) the colors are 1-4.

 CALL COLOR(#0,foreground-color) sets the MOUSE color.

See Appendix D for available characters and character sets in Pattern
Mode.

35

MYARC Advanced BASIC

Text Modes

An error occurs if you use the COLOR subprogram to assign character
colors in either Text Mode (i.e. Graphics(2,1) or Graphics(3,1)). Use
the SCREEN subprogram to assign character colors in Text Mode. Sprites
are not displayed in text mode.

Graphics(1,2) and (1,3)

In these modes, you can use COLOR only to assign colors to sprites; any
other use of the COLOR subprogram causes an error. Use the DCOLOR
subprogram to specify character and graphics colors in High-Resolution
Mode.

Sprites

A sprite is assigned a foreground-color when it is created with the
SPRITE subprogram. The back-ground-color of a sprite is always
transparent.

To re-assign colors to sprites you must use the sprite parameters, no
matter what graphics mode the computer is in.

The sprite-number is a numeric-expression whose value specifies
the number of a sprite as assigned by the SPRITE subprogram.

Fore-ground-color is a numeric-expression whose value specifies a
color that can be assigned from among the 16 available colors.

Examples

100 CALL COLOR(#5,16)
Sets sprite number 5 to have a foreground-color of 16 (white). The
background is always 1 (transparent).

This example is valid in all graphics modes. (Remember that sprites
have no effect in Text Modes).

100 CALL COLOR(#7,INT(RND*16+1))
Sets sprite number 7 to have a foreground-color chosen randomly from
the 16 colors available. The background-color is 1 (transparent).
This example is valid in all graphics modes.

Program
This program sets foreground-color of characters 48-55 to 5(dark blue)
and the background-color to 12(light yellow).

100 CALL CLEAR
110 CALL GRAPHICS(1) or (1,1)
120 CALL COLOR(3,5,12)
130 DISPLAY AT(12,16):CHR$(48)
140 GOTO 140
(Press CLEAR to stop the program.)

36

MYARC ADVANCED BASIC

CONTINUE CONTINUE

Format
CONTINUE
CON

Cross Reference
BREAK

Description

The CONTINUE command restarts a program which has been stopped by a breakpoint.
It may be entered whenever a program has stopped running because of a breakpoint
caused by the BREAK command or statement or pressing Control + Break keys
(CLEAR.) However, you cannot use the CONTINUE command if you have edited a
program line. CONTINUE may be abbreviated as CON.

When a breakpoint occurs, the standard character set and standard colors are
restored. Sprites cease to exist. CONTINUE does not restore user-defined
characters that have been reset or any colors. Otherwise, the program
continues as if no breakpoint had occurred.

37

MYARC Advanced BASIC

COS --Function--Cosine COS

Format
COS(numeric-expression)

Type
REAL

Cross Reference
ATN, SIN, TAN

Description
The COS function returns the cosine of the angle whose measurement in radians
is the value of the numeric-expression.

The value of the numeric-expression cannot be less than
-1.5707963269514E10 or greater than 1.5707963266374E10.

To convert the measure of an angle from degrees to radians, multiply by
pi/180.

Program

The following program gives the cosine for each of several angles.

100 A=1.047197551196
110 B=60
120 C=45*PI/180
130 PRINT COS(A);COS(B)
140 PRINT COS(B*PI/180)
150 PRINT COS(C)
RUN
.5 -.9524129804
.5
.7071067812

38

MYARC ADVANCED BASIC

CREAL CREAL

Format
(numeric-expression)=CREAL(numeric-expression)

Cross Reference
DEFvartype, CINT

Description
Converts a number to single-precision.

CAUTION: mixed mode arithmetic is not allowed.

Arithmetic modes:
 REAL: real numbers and integers.

 BINARY: integers, single-precision, double-precision

Mixing real numbers with either single- or double-precision will cause a
mixed arithmetic mode error.

Example

X=CREAL(Y)

CSNG CSNG

This feature not implemented.

39

MYARC Advanced BASIC

DATA DATA

Format
DATA data-list

Cross Reference
READ, RESTORE

Description
The DATA statement enables you to store constants within your program.
You can assign the constants to variables by using a READ statement.

The data-list consists of one or more constants separated by
commas. The constants can be assigned to the variables specified
in the variable-list of a READ statement. The assignment is made
when the READ statement is executed.

If a numeric variable is specified in the variable-list of a READ
statement, a numeric constant must be in the corresponding position in
the data-list of the DATA statement. If a string variable is specified
in a READ statement, either a string or a numeric constant may be in
the corresponding position in the DATA statement. A string constant in
a data-list may optionally be enclosed in quotation marks. However, if
the string constant contains a comma, a quotation mark, or leading or
trailing spaces, it must be enclosed in quotation marks.

A quotation mark within a string constant is represented by two
adjacent quotation marks. A null string is represented in a data-list
by two adjacent commas, or two commas separated by two adjacent
quotation marks.

The order in which the data values appear within the data-list and the
order of the DATA statements within a program normally determine the
order in which the values are read. Values from each data-list are read
sequentially, beginning with the first item in the first DATA
statement. If your program includes more than one DATA statement, the
DATA statements are read in ascending line-number order (unless you use
a RESTORE statement to specify otherwise).

A DATA statement encountered during program execution is ignored.

A DATA statement cannot be part of a multiple-statement line, nor can
it include a trailing remark.

40

MYARC ADVANCED BASIC

Program

The following program reads and prints several numeric and string
constants.

100 FOR A=1 TO 5
110 READ B,C
120 PRINT B;C
130 NEXT A
140 DATA 2,4,6,7,8
150 DATA 1,2,3,4,5
160 DATA """THIS HAS QUOTES"""
170 DATA NO QUOTES HERE
180 DATA " NO QUOTES HERE, EITHER"
190 FOR A=1 TO 6
200 READ B$
210 PRINT B$
220 NEXT A
230 DATA 1,NUMBER,MYARC
RUN
2 4
6 7
8 1
2 3
4 5
"THIS HAS QUOTES"
NO QUOTES HERE
 NO QUOTES HERE,EITHER
1
NUMBER
MYARC

Line 100 through 130 reads five sets of data and prints their values,
two to a line.

41

MYARC Advanced BASIC

DATE/DATE$ DATE/DATE$

Format
CALL DATE("mm/dd/yy")
DATE$

Description
DATE$ can be a function.

CALL DATE can be a statement or a command.

It can be used to set the date or retrieve the current date.

 To set the date use the format:
 CALL DATE("mm/dd/yy")

 mm is the two-digit equivalent of the current month 01-12
 dd is the two digit date 01-31
 yy is the last two digits. Two-digit range= range 01-99

To retrieve the current date, use the function DATE$.

Example

CALL DATE("01/01/87")

This example sets the date to January 1, 1987

Example

PRINT DATE$
01/01/87

Example

100 PRINT "TODAY'S DATE IS ";DATE$
110 INPUT "DO YOU WISH TO CHANGE THE DATE ?":CHANGE$
120 IF LEFT$(CHANGE$,1)="Y" OR LEFT$(CHANGE$,1)="y" THEN 130 ELSE END
130 INPUT "ENTER NEW DATE:":NEWDATE$
140 CALL DATE(NEWDATE$)
150 GOTO 100

42

MYARC ADVANCED BASIC

DCOLOR --Subprogram--Draw Color DCOLOR

Format
CALL DCOLOR(foreground-color,background-color)

Cross Reference
CIRCLE, COLOR, DRAW, DRAWTO, FILL, GRAPHICS, HCHAR, POINT, RECTANGLE, VCHAR

Description
The DCOLOR subprogram enables you to set the graphics colors.

The graphics colors are used by the CIRCLE, DRAW, DRAWTO, FILL, HCHAR,
POINT, RECTANGLE, and VCHAR subprograms in Bit Mapped Graphics and normal
Graphics modes.

Foreground-color and background-color are numeric-expressions whose
values specify colors that can be assigned from among the 16
available colors. See Appendix F for a list of the available colors.

When you enter MYARC Advanced BASIC, the foreground-color is set to
black and the background-color is set to transparent. These default
graphics colors are restored only when you change graphics mode. They
are not restored when you enter RUN.

DCOLOR is effective only in Bit Mapped and normal Graphics modes. DCOLOR
has no effect in Pattern or Text mode.

Programs

The following program sets the foreground-color of graphics to 5 (dark
blue) and the background-color to 8 (cyan).

100 CALL CLEAR
110 CALL GRAPHICS(2,2)
120 CALL DCOLOR(5,8)
130 CALL HCHAR(8,20,72,3)

In the following program, the letters "HHH" are displayed on the screen.

100 CALL CLEAR
110 CALL GRAPHICS(2,2)
120 RANDOMIZE
130 CALL DCOLOR(INT(RND*8+1)*2,INT(RND*8+1)*2-1)
140 CALL HCHAR(8,20,72,3)
150 FOR X=1 TO 400
160 NEXT X
170 GOTO 120
(Press CLEAR to stop the program.)

Line 130 changes the foreground-color (chosen randomly from the even-
numbered colors available) and the background-color (chosen randomly from
the odd-numbered colors).

43

MYARC Advanced BASIC

DEF --Define Function DEF

Format

DEF function-name[(parameterl [,. . . parameter7])]=expression

Description
The DEF statement enables you to define your own functions. These user-
defined functions can then be used in the same way as built-in functions.

The function-name can be any valid variable name that does not appear
as a variable name elsewhere in your program.

If the function-name is a numeric variable, the value of the expression
must be a number. If the function-name is a string variable, the value of
the expression must be a string.

If the function-name is a numeric variable, you can optionally specify
its data-type (DEFINT, DEFREAL, DEFSNG, or DEFDBL) by using variable
tags.

You can use up to seven parameters to pass values to a function.
Parameters must be valid variable names. A variable name used as a
parameter cannot be the name of an array. You can use an array element
in the expression if the array does not have the same name as a
parameter in that statement. The variable names used as parameters in
a DEF statement are local to that statement; that is, even if a
parameter has the same name as a variable in your program, the value
of that variable is not affected.

If a parameter is a numeric variable, you can optionally specify its data-
type (DEFINT, DEFREAL, DEFSNG, or DEFDBL) by using variable tags.

A DEF statement must have a lower line number than that of any use of the
function-name it defines. A DEF statement is not executed.

A DEF statement can appear anywhere in your program, except that it cannot
be part of an IF THEN statement.

DEF Without Parameters

When your program encounters a statement containing a previously defined
function-name with no parameters, the expression is evaluated, and the
function is assigned the value of the expression at that time.

If you define a function-name without parameters, it must appear without
parameters when you use it in your program.

44

MYARC ADVANCED BASIC

DEF With Parameters

When your program encounters a statement containing a previously defined
function-name with parameters, the parameters values are passed to the
function in the same order in which they are listed. The expression is
evaluated using those values, and the function is assigned the value of
the expression at that time. String values can be passed only to string
parameters. Numeric values can be passed only to numeric parameters.

If you define a function with parameters, it must appear with the same
number of parameters when you use it in your program.

Recursive Definitions

A DEF statement may reference other defined functions (the expression
may include previously defined function-names). However, a DEF statement
may not be directly or indirectly recursive (self-referencing).

Direct recursion occurs when you use the function-name in the expression
of the same DEF statement. (This would be similar to writing a dictionary
definition that included the word you were trying to define.)

Indirect recursion occurs when the expression contains a function-name,
and in turn the expression in the DEF statement of that function (or
other function subsequently referenced) includes the original function-
name. (This would be similar to looking up the dictionary definition of
a word, finding that the definition included other words that you needed
to look up, and then discovering that the definitions led you directly
back to your original word.)

Examples

100 DEF PAY(OT)=40*RATE+1.5*RATE*OT
110 RATE=4.00
120 PRINT PAY(3)
RUN
178

Defines PAY so that each time it is encountered in a program the pay is
figured using the RATE of pay times 40 plus 1.5 times the rate of pay
times the overtime hours.

100 DEF RND20=INT(RND*20+1)
Defines RND20 so that each time it is encountered in a program an integer
from 1 to 20 is given.

100 DEF FIRSTWORD$(NAME$)=SEG$(NAME$,1,POS(NAME$," ",1)-1)
Defines FIRSTWORD$ to be the part of NAMES$ that precedes a space.

45

MYARC Advanced BASIC

DEFvartype DEFvartype

Vartypes: DEFINT, DEFREAL

DEFINT - define as integers
DEFREAL - define as double-precision RADIX 99 floating point (64 bit)

Format: DEFINT I,J,COUNT,LOOPNUM,DIM A(100)
 DEFREAL SQRROOT,VALUE,N,DIM D(40)
 DEFSTR NAM,FILENAME,N,F,DIM E(75)

NOTE: DEFREAL ALL is the default mode in MYARC Advanced BASIC.

Cross Reference
DIM, OPTION BASE, SUB

Description
The DEFvartype instruction enables you to declare the data-type of
specified variables.

Usually the name given to a variable will identify the type of
variable. Example: If a variable name ends in a dollar sign (i.e. A$)
then the variable is a string variable. Numeric variables can be
identified in MYARC Advanced BASIC in terms of precision by the use of
the following symbol as terminator attached to the end of the variable
name. %,is termed type declaration tag.

 SYMBOL TYPE OF VARIABLE

 $ STRING VARIABLE
 % INTEGER CONSTANT

Variables can also be declared by use of the DEFvartype statement. The
declaration must be present and executable at a lower line number than
that of any use of the variable-names that it represents.

A DEFvartype statement must appear at the beginning of a line. Also,
any variable defined by that statement must appear later in the
program.

46

MYARC ADVANCED BASIC

The variable-list consists of one or more variables separated by
commas. The DEFINT and DEFREAL statements allow an ALL option, if this
is used then all numeric variables in the program will be defined as
the type specified except if they are specifically declared otherwise.

A numeric variable of the integer data-type is a whole number greater
than or equal to -32768 and less than 32767.

Integer variables are processed faster and use less memory that do
real (or floating) point variables.

CAUTION: mixed mode floating point arithmetic is not allowed.

 REAL: real numbers and integers

 BINARY: integers, single-precision, double-precision

Mixing real numbers with either single- or double-precision will cause
a mixed mode arithmetic error.

DEFvartype statements also can be used to declare thee types of arrays.

TYPE-DECLARATION-TAGS override DEFvartype statements.

Programs

In the following example, DEFSTR NAM overrides DEFINT ALL such that
NAM(5) will be treated as a string.

100 DEFINT ALL
110 DEFSTR NAM(5)
120 NAM(5)="MYARC"::X%=37.123545::I=1.2345
130 PRINT NAM(5);X;I
RUN
MYARC 37.123545 1

47

MYARC Advanced BASIC

DELETE DELETE

Format
DELETE [startline#-endline#]

Description
100-200 deletes lines 100-through 200.

 COMMAND LINES DELETED

 DELETE All lines.
 DELETE X Line number X only.
 DELETE X- Lines from number X to the highest line number, inclusive.
 DELETE -X Lines from the lowest line number to line number X, inclusive.
 DELETE X-Y All lines from line number X to line number Y, inclusive.
 DELETE X,Y All lines from line number X to line number Y, inclusive.

If any line-number-range does not include a line number in your program, the
following conventions apply:

If line-number-range is higher than any line number in your program, the
highest-numbered program line is deleted.

If line-number0range is lower than any line number in your program, the
lowest-numbered program line is deleted.

If line-number-range is between lines in the program, only those lines
that fall within the range specified will be deleted.

NOTE: For TI 99/4A Programs:

Delete will no longer be used to delete files from DISK STORAGE DEVICE.
See KILL, CLOSE, FILES. However, programs that contain a "DELETE" file
statement will execute exactly as they did under TI BASIC or TI EXTENDED
BASIC. The token used internally will now be occupied by the KILL
command. As long as the program is stored in tokenized form(program
file, or DV163 merge format), then execution will not be affected. On
listing the program, the word "KILL" will

 be listed instead of "DELETE".

DELETE--no longer applies to files. DELETE applies to line numbers only. To
delete files, see KILL.

48

MYARC ADVANCED BASIC

DELSPRITE --Subprogram--Delete Sprite DELSPRITE

Format
Delete Specified Sprite

CALL DELSPRITE(#sprite-number[,.. •])
Delete All Sprites

CALL DELSPRITE(ALL)

Cross Reference
CLEAR, SPRITE

Description
The DELSPRITE subprogram enables you to delete one or more sprites. All
sprites are deleted when your program ends (either normally or because of
an error), stops at a breakpoint, or changes graphics mode.

Delete Specific Sprites

Sprite-number is a numeric-expression whose value specifies the number
of the sprite as assigned in the SPRITE subprogram. The sprite can
reappear if it is redefined by the SPRITE subprogram, or if the
LOCATE subprogram is called.

Delete All Sprites

If you enter the ALL option, all sprites are deleted, and can
reappear only if redefined by the SPRITE subprogram.

Examples

100 CALL DELSPRITE(#3)
Deletes sprite number 3.

100 CALL DELSPRITE(#4,#3*C)
Deletes sprite number 4 and the sprite whose number is found by multiplying 3
by C.

100 CALL DELSPRITE(ALL)
Deletes all sprites.

49

MYARC Advanced BASIC

DIM --Dimension DIM

Format
DIM array-name(integerl[,... integer7])[,array-name...]

Cross Reference
OPTION BASE

Description
The DIM instruction enables you to dimension (reserve space for) arrays with
one to seven dimensions.

You can use DIM as either a program statement or a command.

The array-name must be a valid variable name. It cannot be used as the
name of a variable or as the name of another array. An array is either
numeric or string, depending on the array-name.

The integer is the upper limit of element numbers in a dimension.

If a program includes an OPTION BASE 1 statement, the first element is
element 1, so the number of elements is equal to the integer plus 1.

A string array cannot have more than 16383 elements. For numeric
arrays, a DEFINT array cannot have more than 32767 elements, and a
floating point array cannot have more than 16383 elements. The number
of integers in parentheses following the array-name determines the
number of dimensions (1-7) in the array.

You can optionally specify the data-type (DEFvartype) of a numeric
array by replacing DIM with the data-type.

An error occurs if you try to dimension a particular array more than once.

Note that you cannot use both instruction formats (DIM and data-type) to
dimension the same array.

You cannot use OPTION BASE as a command.

You can dimension as many arrays with one DIM instruction as you can fit
in one input line.

If you reference an array without first using a DIM instruction to dimension
it, each dimension is assumed to have 11 elements (elements 0-10), or 10 elements
(elements 1-10) if your program includes an OPTION BASE 1 statement.

If you use a DIM statement to dimension an array, the DIM statement must
have a line number lower than that of any reference to that array. DIM
statements are interpreted during pre-scan and are not executed.

A DIM statement can appear anywhere in your program, except as part of an
IF THEN statement.

50

MYARC ADVANCED BASIC

Referencing an Array

To reference a specific element of an array, you must use subscripts.
Subscripts are numeric-expressions enclosed in parentheses immediately
following the reference to the array-name. An array must include one
subscript for each dimension in the array. If necessary, the value of a
subscript is rounded to the nearest integer.

Reserving Space for Arrays

When you use DIM as a program statement, the computer reserves space for
arrays when enter the RUN instruction, before your program is actually
run. If the computer cannot reserve space for an array with the dimensions
you specify, the message Memory Full in line-number is displayed, and
the command does note execute.

When you use DIM as a command, if the computer cannot reserve space for
an array with the dimensions you specify, the message Memory Full is
displayed and the command does not execute.

Until you place values in an array, each element in a string array is a
null string and each element in a numeric array has a value of zero.

Naming Arrays

The rules for naming array variables follow the same pattern as the rules
for other type variables, namely if a variable name ends in variable type
descriptor defines the variable type.

 NOTE: If a DEFSTR statement is executed then a string array name
need not end in a $.

 Array variable names ending in % refer to integer variables.

Type/declaration tags, such as $, %, take precedence over
DEFvartype all declarations.

The following statements will remove arrays from memory:

 NEW, OLD, MERGE, RUN (without continue)

CALL MEMSET --sets all elements of an array to a defined value. (See
command MEMSET)

Examples
100 DIM X$(30)
Reserves space in the computer's memory for 31 string numbers of the
array called X$.

100 DIM D(100),B(10,9)
Reserves space in the computer's memory for 101 members of the array
called D and 110 (11 times 10) members of the array called B.

51

MYARC Advanced BASIC

DISPLAY DISPLAY

Format
DISPLAY [print-list]
DISPLAY [AT(row,column)] [BEEP] [ERASE ALL] [CLIP] [INVERSE/BLINK]
[SIZE(numeric-expression)] [:print-list]

Cross Reference
DISPLAY USING, GRAPHICS, MARGINS, PRINT, BTIME, BCOLOR

Description
The DISPLAY instruction enables you to display numbers and strings on
the screen. The numeric- and/or string-expressions in the print-list
can be constants and/or variables.

The options available with the DISPLAY instruction make it more
versatile for screen output than in the PRINT instruction. You can
display data at any screen position, sound a tone when data items are
displayed, clear the screen or a portion of the display row before
displaying data, and accentuate displayed data by using the
INVERSE/BLINK option.

You can use DISPLAY as either a program statement or a command.

The print-list consists of one or more print-items (items to be
displayed on the screen) separated by print-separators. See PRINT
for an explanation of the print-items and print-separators that
make up a print-list.

Options

You can enter the following options, separated by a space, in any
order.

AT--The AT option enables you to specify the beginning of the
display field. Row and column are relative to the upper-left
corner of the screen window defined by the margins. If you do not
use the AT option, the display field begins in the far left column
of the bottom row of the current screen window. Before a new line
is displayed at the bottom of the window, the entire contents of
the window(excluding sprites) scroll up one line to make room for
the new line. The contents of the top line of the window scroll
off the screen and are discarded. If you use the AT option and
your print-list includes a TAB function, the TAB location is
relative to the beginning of the display field. If you use the AT
option and a print-item is too long to fit in the display field.
either the extra characters are discarded (if you use the SIZE
option) or the print-item is moved to the beginning of the next
screen line (if you do not use the SIZE option).

BEEP--The BEEP option sounds a short tone when the data items are
displayed.

52

MYARC ADVANCED BASIC

ERASE ALL--The ERASE ALL option places a space character (ASCII code 32) in
every character position in the screen window before displaying the data.

SIZE--The SIZE option is a numeric-expression whose value specifies the
number of character positions to be cleared, starting from the beginning
of the display field, before the data is displayed. If the numeric-
expression is greater than the number of characters remaining in the row
(from the beginning of the display field to the right margin), or if you
do not use the SIZE option, the display row is cleared from the beginning
of the display field to the right margin.

New Options

CLIP--Using the CLIP option, the string represented in the "DISPLAY AT"
statement will be clipped at the end of a line rather than wrapping around
to the next line, as it does in the default mode. The CLIP option is
particularly useful when using "DISPLAY AT" within a window.

BLINK/INVERT--BLINK will cause the line displayed to BLINK on and off.
This is only available in GRAPHICS(3,1) mode.

INVERT--Will cause the pixels in each character to invert their colors so
the foreground- and background-colors will be inverted. This is only
available in GRAPHICS(2,2), (2,3), (3,2), (3,3) modes.

Examples

100 DISPLAY AT(5,7):Y
Displays the value of Y at the fifth row, seventh column of the screen. It
first clears row 5 from column 7 to the right margin.

100 DISPLAY ERASE ALL:B
Puts the blank character into all positions within the current screen window
before displaying the value of B.

100 DISPLAY AT(R,C) SIZE(FIELDLEN)BEEP:X$
Displays the value of X$ at row R, column C. First it beeps and blanks
FIELDLEN characters.

Program

The following program illustrates a use of DISPLAY. It enables you to
position blocks at any screen position to draw a figure or design.

Numbers must be entered as two digits (e.g., 1 would be "01", etc.). Do not
press ENTER; the information is accepted as soon as the keys are pressed.

53

MYARC Advanced BASIC

This example is valid only in Pattern Mode.

100 CALL CLEAR

110 CALL COLOR(27,5,5)

120 DISPLAY AT(23,1):"ENTER ROW AND COLUMN:"
130 DISPLAY AT (24,1):"ROW:COLUMN:"
140 FOR COUNT=1 TO 2

150 CALL KEY(O,ROW(COUNT),S)
160 IF S =0 THEN 150

170 DISPLAY AT(24,5+COUNT)SIZE(1):STR$(ROW(COUNT)-48)

180 NEXT COUNT

190 FOR COUNT=1 TO 2
200 CALL KEY(0,COLUMN(COUNT),S)
210 IF S =0 THEN 200

220 DISPLAY AT(24,16+COUNT)SIZE(1):STR$(COLUMN(COUNT)-48)
230 NEXT COUNT

240 ROW1=10*(ROW(1)-48)+ROW(2)-48

250 COLUMN1=10*(COLUMN(1)-48)+COLUMN(2)-48
260 DISPLAY AT(ROW1,COLUMN1)SIZE(1):CHR$(244)
270 GOTO 130

(Press CLEAR to stop the program.)

54

MYARC ADVANCED BASIC

DISPLAY USING DISPLAY USING

Format
DISPLAY [option-list:]USING ;format-string;[:print-list]; line-number;

Cross Reference
DISPLAY, IMAGE, PRINT

Description
The DISPLAY USING instruction enables you to define specific formats for
numbers and strings you display.

You can use DISPLAY USING as either a program statement or a command.

The format-string specifies the display format. The format-string is a
string expression; if you use a string constant, you must enclose it in
quotation marks. See IMAGE for an explanation of format-strings.

You can optionally define a format-string in an IMAGE statement, as
specified by the line-number.

See DISPLAY under "Options" for an explanation of the options AT,
BEEP, ERASE ALL, and SIZE.

See PRINT for an explanation of the print-list and print-options.

The DISPLAY USING instruction is identical to the DISPLAY instruction
with the addition of the USING option, except that:

You cannot use the TAB function.

You cannot use any print-separator other than a comma(,), except that
the print-list can end with a semicolon (;).

Examples

100 N=23.43
110 DISPLAY AT(10,4):USING"##.##":N
Displays the value of N at the tenth row and fourth column, with the format
"##.##", after first clearing row 10 from column 4 to the right margin.

100 DISPLAY USING "##.##":N
Displays the value of N at the 24th row and first column, with the format
"##.##".

55

MYARC Advanced BASIC

DISTANCE --Subprogram DISTANCE

Format
Two Sprites

CALL DISTANCE(#sprite-numberl,#sprite-number2,numeric-variable)
A Sprite and a Screen Pixel

CALL DISTANCE (#sprite-number,pixel -row, pixel -col umn ,numeric-variable)

Cross Reference
COINC, SPRITE

Description
The DISTANCE subprogram enables you to ascertain the distance between two
sprites or between a sprite and a specified screen pixel.

The DISTANCE subprogram returns the square of the distance sought. (Note
that this is not the same as the distance specified by the "tolerance" in
the COINC subprogram.)

The square of the distance is the sum of the square of the difference between
pixel-rows and the square of the difference between pixel-columns. The distance
between the two sprites (or the sprite and the screen pixel) is the square root
of the number returned.

If the square of the distance is greater than 32767, the number returned
is 32767.

Two Sprites

The distance between two sprites is considered to be the distance between
the upper-left corners of the sprites.

Sprite-numberl and sprite-number2 are numeric-expressions whose values
specify the numbers of the two sprites as assigned in the SPRITE
subprogram.

The number returned to the numeric-variable equals the square of the
distance between two sprites.

A Sprite and a Screen Pixel

The distance between a sprite and a screen pixel is considered to be the distance
between the upper-left corner of the sprite and the specified pixel.

Sprite-number is a numeric-expression whose value specifies the number
of the sprite as assigned in the SPRITE subprogram.

The pixel-row and pixel-column are numeric-expressions whose values
specify the position of the screen pixel.

The number returned to the numeric-variable equals the square of the
distance between the sprite and the screen pixel.

56

MYARC ADVANCED BASIC

Examples

100 CALL DISTANCE(#3,#4,DIST)
Sets DIST equal to the square of the distance between the upper-left corners
of sprite #3 and sprite #4.

100 CALL DISTANCE(#4,18,89,D)
Sets D equal to the square of the distance between the upper-left corner of
sprite #4 and position 18,89.

57

MYARC Advanced BASIC

DRAW --Subprogram DRAW

Format
CALL DRAW(line-type,pixel-rowl,pixel-columnl,pixel-row2,pixel-column2
[,pixel-row3,pixel-column3,pixel-row4,pixel-column4[,...]])

Cross Reference
CIRCLE, DCOLOR, DRAWTO, FILL, GRAPHICS, POINT, RECTANGLE

Description
The DRAW subprogram enables you to draw or erase lines between specified
pixels.

The value of the numeric-expression line-type specifies the action
taken by the DRAW subprogram.

TYPE ACTION

1 Draws a line of the foreground-color specified by the
DCOLOR subprogram. This is accomplished by turning on
each pixel in the specified line.

0 Erases a line. This is accomplished by turning off each
pixel in the specified line.

2 Reverses the status of each pixel on the specified line.
(If a pixel is on, it is turned off; if a pixel is off,
it is turned on.) This effectively reverses the color
of the specified line.

Pixel-row and pixel-column are numeric-expressions whose values
specify the pixels to be connected by the line. You must specify at
least two pixels to define the beginning and end points of a line.

Pixel-row must have a value from 1 to 192. Pixel-column must have a
value from 1 to 256.

You can optionally draw more lines by specifying additional pairs of pixels.
The lines are not connected; each line extends from the first pixel of the pair
to the second pixel of the pair. You must specify an even number of pixels.

The last pixel you specify becomes the current position used by the DRAWTO
subprogram.

DRAW cannot be used in Pattern or Text modes of display. An error results
if you use DRAW in Pattern or Text Modes.

58

MYARC ADVANCED BASIC

In Graphics(1,2) and (1,3) modes, the computer divides each pixel-row into
32 groups of 8 pixels each. (This is most obvious when you assign a
background-color other than cyan or transparent.) The computer can assign
1 foreground-color and 1 background-color, from among the 16 available
colors, to each 8-pixel group.

In the Bit-Mapped modes, each pixel is independent of every other pixel on
the screen.

Programs

The following program draws a large triangle on the right of the screen.

100 CALL GRAPHICS(3)
110 CALL CLEAR
120 CALL DRAW(1,19,185,97,115)
130 CALL DRAW(1,19,185,97,255)
140 CALL DRAW(1,97,115,97,255)
150 GOTO 150
(Press CLEAR to stop the program.)

The next program uses a FOR-NEXT loop to draw a pattern of lines.

100 CALL CLEAR
110 CALL GRAPHICS(3)
120 CALL SCREEN(6)
130 FOR X=1 TO 255 STEP 5
140 CALL DRAW(1,1,X,128,256-X)
150 NEXT X
160 GOTO 160
(Press CLEAR to stop the program.)

59

MYARC Advanced BASIC

DRAWTO --Subprogram DRAWTO

Format
CALL

DRAWTO(line-type,pixel-row,pixel-column[,pixel-row2,pixel-column2[,...]])

Cross Reference
CIRCLE, DCOLOR, DRAW, FILL, GRAPHICS, POINT, RECTANGLE

Description
The DRAWTO subprogram enables you to draw or erase lines between the current
position and the specified pixels.

Line-type is a numeric-expression whose value specifies the action
taken by the DRAWTO subprogram.

TYPE ACTION

1 Draws a line of the foreground-color specified by the
DCOLOR subprogram. This is accomplished by turning on
each pixel in the specified line.

0 Erases a line. This is accomplished by turning off each
pixel in the specified line.

2 Reverses the status of each pixel on the specified line.
(If a pixel is on, it is turned off; if a pixel is off, it
is turned on.) This effectively reverses the color of the
specified line.

The line drawn by DRAWTO extends from the pixel in the current position
to the pixel specified by the values of the numeric-expressions
pixel-row and pixel-column, which becomes the new current position.

You can optionally draw more lines by specifying additional sets of
pixels. A line is drawn to each specified pixel from the new current
position (the previously specified pixel).

Pixel-row must have a value from 1 to 192, pixel-column must have a
value from 1 to 256.

The current position is the last pixel specified the last time the DRAW or the
DRAWTO subprogram was called. When you enter MYARC Advanced BASIC, the current
position is the intersection of pixel-row 1 and pixel-column 1.

This default current position is restored only when you change graphics mode.

DRAWTO cannot be used in Pattern or Text modes of display. An error results
if you use DRAWTO in Pattern or Text Modes.

60

MYARC ADVANCED BASIC

In Graphics(1,2) and (1,3) modes, the computer divides each pixel-row
into 32 groups of 8 pixels each. (This is most obvious when you assign a
background-color other than cyan or transparent.) The computer can assign
1 foreground-color and 1 background-color (from among the 16 available
colors), to each 8-pixel group.

Program The following program uses DRAWTO to create a pattern across the
top of the screen.

100 CALL GRAPHICS(3)
110 CALL CLEAR
120 A=20::B=20
130 CALL DRAW(1,A,B,A,B)
140 FOR X=1 TO 10
150 B=B+20
160 CALL DRAWTO(1,A,B)
170 CALL DRAWTO(1,A+20,B-20)
180 CALL DRAWTO(1,A+20,B)
190 CALL DRAWTO(1,A,B-20)
200 NEXT X
210 GOTO 210
(Press CLEAR to stop the program.)

A new command or program statement CALL PSET(X,Y) can be used to set
starting point for DRAWTO.

ECOLOR --Subprogram ECOLOR

Format
CALL ECOLOR(color)

Cross reference
TCOLOR

Description
CALL ECOLOR(color) is used to "color in" the edge between the text and
the border in Graphics modes (2,2), (2,3), (3,2), (3,3).

Example
CALL ECOLOR(10)
This would "color in" the edge as Light Red.

Program
100 CALL GRAPHICS(3,3)
110 CALL TCOLOR(4,14)
120 DISPLAY ERASE ALL
130 CALL ECOLOR(14)
RUN
Line 110 would set the text area for characters as foreground-color of
Light Green and background-color to Magenta.
Line 120 would "paint" the screen with ASCII 32(blank character) in the
background-color of Magenta.
Line 130 would set the edge color to Magenta.

 61

MYARC Advanced BASIC

END END

Format
END

Cross Reference
STOP

Description
The END statement stops the execution of your program.

In addition to terminating program execution, END causes the computer
to perform the following operations:

 It closes all open files.

 It restores the default character definitions of all characters.

It restores the default foreground color and background color to
all characters in the Graphic mode selected unless you have used
TCOLOR or PALETTE in those modes where they are allowed.

It restores the default screen color if you have not changed the
screen color in those modes where they are allowed.

 It deletes all sprites.

 It resets the sprite magnification level to 1.

The graphic colors (see DCOLOR) and current position (see DRAWTO) are
not affected.

An END statement is not necessary to stop your program; the program
automatically stops after the highest line is executed.

END can be used interchangeably with the STOP statement, except that
you cannot use STOP after a subprogram.

62

MYARC ADVANCED BASIC

EOF EOF

Format
EOF(file-number)

Type
DEFINT

Cross Reference
ON ERROR

Description
The EOF function returns a value indicating whether there are records
remaining in a specified file.

The file-number is a numeric expression whose value specifies the
number of the file as assigned in its OPEN instruction.

The value returned by the EOF function depends on the current file position.
EOF always treats a file as if it were being accessed sequentially, even if
it has been opened for relative access.

VALUE MEANING

 0 Not end-of-file.

(+)1 Logical end-of-file: No records remaining.

-1 Physical end-of-file: No records remaining, and no space
available for more records (storage medium full).

The EOF function cannot be used with an audio cassette.

For more information about using EOF with a particular device, refer to
the owner's manual that comes with that device.

Examples

100 PRINT EOF(3)
Prints a value according to whether you are at the end of the file opened as
#3.

100 IF EOF(27)<>0 THEN 1150
Transfers control to line 1150 if you are at the end of the file opened as
#27.

100 IF EOF(27) THEN 1150
Transfers control to line 1150 if you are at the end of the file opened as
#27.

63

MYARC Advanced BASIC

ERR --Subprogram--Error ERR

Format
CALL ERR(error-code,error-type[,error-severity,[line-number]])

Cross Reference
ON ERROR

Description
The ERR subprogram enables you to analyze the conditions that caused a
program error.

ERR is normally called from a subroutine accessed by an ON ERROR statement.

The ERR subprogram returns the error-code and error-type, and optionally the
error-severity and line-number, of the most recent "uncleared" program error.

An error is "cleared" when another program error occurs or when the program
ends. A RETURN statement in a subroutine accessed by an ON ERROR statement
also clears the error.

ON ERROR will not trap an error caused by the RUN command.

ERR returns a two- or three-digit number to the numeric variable error-
code. See Appendix J for a list of error codes and the conditions that
cause them to be displayed.

An error-code of 130- indicates an input/output (I/O) error.

An error-code of 0 indicates that no error has occurred. The

error-type is a numeric variable.

When an I/O error occurs, the value returned in error-type is the
number (as assigned in an OPEN instruction) of the file in which the
error occurred.

A negative error-type indicates that the error occurred during program
execution.

An error-type of 0 indicates that no error has

occurred. Options

The value returned to the numeric variable error-severity is always
nine.

The value returned to the numeric variable line-number is the line
number of the program statement that was executing when the error
occurred.

6 4

MYARC ADVANCED BASIC

Examples

100 CALL ERR(A,B)
Sets A equal to the error-code and B equal to the error-type of the most
recent error.

100 CALL ERR(W,X,Y,Z)
Sets W equal to the error-code, X equal to the error-type, Y equal to the
error-severity, and Z equal to the line-number of the most recent error.

Program

The following program illustrates a use of CALL ERR.

100 ON ERROR 130
110 CALL SCREEN(18)
120 STOP
130 CALL ERR(W,X,Y,Z)
140 PRINT W;X;Y;Z
150 RETURN NEXT
RUN
79 -1 9 110

An error is caused in line 110 by an improper screen-color number. Because
of line 100, control is transferred to line 130. Line 140 prints the values
obtained. The 79 indicates that a bad value was provided, the -1 indicates
that the error occurred during program execution, the 9 is the error-
severity, and the 110 indicates that the error occurred in line 110.

65

MYARC Advanced BASIC

EXP --Function--Exponential EXP

Format
EXP(numeric-expression)

Type
REAL

Cross Reference
LOG

Description
The EXP function returns the value of e raised to the power of the value of
the numeric-expression.

EXP is the inverse of the LOG function.

The value of e is 2.718281828459.

Examples

100 Y=EXP(7)
Assigns to Y the value of e raised to the seventh power, which yields
1096.6331584290.

100 L=EXP(4.394960467)
Assigns to L the value of e raised to the 4.394960467 power, which yields
81.0414268887.

66

MYARC ADVANCED BASIC

FILES FILES

Format
CALL FILES(pathname)

Cross Reference
DOS Manual, Pathnames, Directories, OPEN, CLOSE, KILL, KEY LIST,CHDIR

Description
You can use CALL FILES either as a program statement or a command.

Displays the names of the files and directories on a disk. If pathname
is specified, BASIC lists all files that match that pathname. Default is
all files and directories in the current directory on the current drive.

To halt list, depress any key. To continue the listing, press another or
the same key. This only works in command mode.

Examples

CALL FILES
Displays files of the default drive. (see KEY LIST,PWD,CHDIR)

CALL FILES("DSK1.")
Displays files in drive 1.

CALL FILES("RD")
Displays files on RD (ramdisk).

CALL FILES("DSK.UTILITIES.")
Searches all drives for the disk named "UTILITIES" and displays files.

CALL FILES(DSK1.SUBDIR3.")
Displays files of "SUBDIR3" . The maximum subdirectories for floppys is
three.

CALL FILES(HDS1.SUBDIR1.SUBDIR2.")
Displays files of "SUBDIR2" which is a subdirectory of "SUBDIR1"

NOTE: DO NOT USE with a window less than 28 characters wide.

 67

MYARC Advanced BASIC

FILL --Subprogram FILL

Format
CALL FILL(pixel-row,pixel-column)

Cross Reference
CIRCLE, DCOLOR, DRAW, DRAWTO, GRAPHICS, POINT, RECTANGLE

Description
The FILL subprogram enables you to fill in the area surrounding a
specified pixel with a specified color.

Pixel-row and pixel-column are numeric-expressions whose values
specify the pixel that you want to surround with a color or
pattern.

Character-code is a numeric-expression with a value from 0-215
specifying the character with which to fill the area surrounding
the specified pixel.

Pixel-row must have a value from 1 to 192, pixel-column must have
a value from 1 to 256. The color of the pattern that surrounds the
specified pixel is the foreground-color specified by the COLOR
subprogram. If you have not called the DCOLOR subprogram, the
default fill color is lt. green.

The area surrounding the specified pixel is filled with the fill
pattern until a screen edge or a foreground pixel (a pixel that is
turned on) is encountered.

The boundaries of the area to be filled can be defined by lines drawn
with CIRCLE, DRAW, DRAWTO, POINT, RECTANGLE subprograms.

FILL cannot be used in Pattern or Text modes. An error results if you
use FILL in Pattern or Text modes.

In Graphics(1,2) and (1,3) modes the computer divides each pixel-row
into 32 groups of 8 pixels each. The computer can assign a foreground-
color and a background-color (from among the 16 available colors) to
each 8 pixel group.

68

MYARC ADVANCED BASIC

Program

The following program divides the upper portion of the screen into four
horizontal columns and uses FILL to color them.

100 CALL CLEAR
110 CALL GRAPHICS(3)
120 CALL DRAW(1,48,0,48,256)
130 CALL DRAW(1,96,0,96,256)
140 CALL DRAW(1,144,0,144,256)
150 CALL DCOLOR(7,8)
160 CALL FILL(43,1)
170 CALL DCOLOR(11,8)
180 CALL FILL(90 1)
190 CALL DCOLOR(3,8)
200 CALL FILL(138,1)
210 CALL DCOLOR(6,8)
220 CALL FILL(188,1)
230 GOTO 230
(Press CLEAR to stop the program.)

69

MYARC Advanced BASIC

FOR TO FOR TO

Format

FOR control-variable=initial-value TO limit[STEP increment]

Cross Reference
NEXT

Description
The FOR TO instruction is used with the NEXT instruction to form a FOR-NEXT
loop, which you can use to control a repetitive process.

You can use FOR TO as either a program statement or a

command. FOR-NEXT Loop Execution

When a FOR TO instruction is executed, the initial-value is assigned to the
control-variable. The computer executes instructions until it encounters a
NEXT instruction (the group of instructions between the FOR TO and NEXT
instructions are known as a "FOR-NEXT loop"). However, if the initial-value is
greater than the limit (or, if you specify a negative increment, if the initial-
value is less than the limit) the FOR-NEXT loop is not executed.

When the NEXT instruction is encountered, the increment is added to the
control-variable; if you do not specify an increment, the control-variable
is incremented by I. Note that if the increment is negative, the value of
the control-variable is decreased.

The control-variable in the NEXT instruction must be the same as the
control-variable in the FOR TO instruction. The new value of the control-
variable is then compared to the limit. If you specify a positive increment
(or if you do not specify an increment), the FOR-NEXT loop is repeated if
the control-variable is less than or equal to the limit. If you specify a
negative increment, the FOR-NEXT loop is repeated if the control-variable
is greater than or equal to the limit.

If the condition for repeating the FOR-NEXT loop is met, control passes to
the instruction immediately following the FOR TO instruction. If the
condition is not met, the FOR-NEXT loop terminates (control passes to the
statement immediately following the NEXT statement).

Specifications

The value of the numeric-expression control-variable is re-evaluated
each time the NEXT instruction is executed. If you change its value
while a FOR-NEXT loop is executing, you may affect the number of times
the loop is repeated. A FOR-NEXT loop executes much faster if the
control-variable has been declared as a DEFINT than it does if the
control-variable is REAL.

The control-variable cannot be an element of an array.

70

MYARC ADVANCED BASIC

The initial-value is a numeric-expression.

The value of the numeric-expression limit is not re-evaluated during
the execution of a FOR-NEXT loop. If you change its value while a FOR-
NEXT loop is executing, you do not affect the number of times the loop
is repeated.

The value of the optional numeric-expression increment is not re-
evaluated during the execution of a FOR-NEXT loop. If you change its
value while a FOR-NEXT loop is executing, you do not affect the number
of times the loop is repeated. The increment cannot be zero.

Nested FOR-NEXT Loops

FOR-NEXT loops may be "nested"; that is, one FOR-NEXT loop may be contained
wholly within another. You must observe the following conventions:

Each FOR TO instruction must be paired with a NEXT instruction.

Each nested loop must use a different control-variable.

If' a FOR-NEXT loop contains any portion of another FOR-NEXT loop, it
must contain all of that FOR-NEXT loop. If a FOR-NEXT loop contains
only part of another FOR-NEXT loop, an error occurs, and the message
NEXT without FOR is displayed. If the FOR-NEXT loop is part of a
program, the computer also displays the line-number where the error
occurred.

FOR TO as a Program Statement

After you enter the RUN command, but before your program is actually run, the
computer verifies that you have equal numbers of FOR TO and NEXT statements. If
the numbers are not equal, the message FOR-NEXT nesting is displayed and the
program is not run.

You can exit a FOR-NEXT loop by using a GOTO, ON GOTO, or IF THEN statement. If
you use one of these statements to enter a loop, you could cause an error or
create an infinite loop.

A FOR TO statement cannot be part of an IF THEN statement.

FOR TO as a Command

If you use FOR TO as a command, it must be part of a multiple-statement
line. A NEXT instruction must also be part of the same line.

After you press ENTER to execute the command, but before the command is
actually executed, the computer verifies that you have equal numbers of FOR
TO and NEXT instructions. If the numbers are not equal, the message FOR-
NEXT nesting is displayed and the command is not executed.

71

MYARC Advanced BASIC

Examples

100 FOR A=1 TO 5 STEP 2
110 PRINT A
120 NEXT A
Executes the statements between this FOR and NEXT A three times, with A
having values of 1, 3, and 5. After the loop is finished, A has a value of

7.

100 FOR J=7 TO -5 STEP -.5
110 PRINT J
120 NEXT J
Executes the statements between this FOR and NEXT J 25 times, with J having
values of 7, 6.5, 6,..., -4, -4.5, and -5. After the loop is finished, J has
a value of -5.5.

Program

The following program illustrates a use of the FOR-TO-STEP statement. There
are three FOR-NEXT loops, with control-variables of CHAR, ROW, and COLUMN.

100 CALL CLEAR
110 0=0
120 FOR CHAR=33 TO 63 STEP 30
130 FOR ROW=1+D TO 21+0 STEP 4
140 FOR COLUMN=l+D TO 29+D STEP 4
150 CALL VCHAR(ROW,COLUMN,CHAR)
160 NEXT COLUMN
170 NEXT ROW
180 D=2
190 NEXT CHAR
200 GOTO 200
(Press CLEAR to stop the program.)

72

MYARC ADVANCED BASIC

FREESPACE --Function FREESPACE

Format
FREESPACE(memory-type)

Type
REAL

Description
The FREESPACE function returns a number representing, in bytes, the
amount of memory space available for MYARC Advanced BASIC programs
and data.

 The following are the memory-types:

 0 ALL memory
 1 program space
 2 data space
 3 assembly space
 4 stack space

Garbage Collection

Before FREESPACE returns a value, the computer executes an activity
called "garbage collection".

 All "inactive" strings are deleted. Strings become inactive
when they are not associated with a variable. A string may be
created by the computer for its internal use; it becomes inactive
when no longer needed.

 All "active" strings (strings that are still associated with
variables) are moved to a contiguous area at the low end of
memory. This leaves all available memory in one large, contiguous
block.

The computer occasionally performs garbage collection by itself, i.e.
when no memory is available because of an excess number and size of
inactive strings.

NOTE: Stack space has a defined value of 3968 bytes. (>E000->EF80)

Examples
PRINT FREESPACE(0)
Prints a value that indicates the amount of available memory.

PRINT FREESPACE(2)
Prints a value that indicates the amount of available data space in
bytes, which is based on the amount of memory allocation you chose
when you started MYARC Advanced BASIC from MDOS.

73

MYARC Advanced BASIC

GCHAR --Subprogram--Get Character GCHAR

Format
Pattern and Text Modes
 CALL GCHAR(row,column,numeric-variable)
High-Resolution Mode
 CALL GPOINT(pixel-row,pixel-column,numeric-variable color value)

Cross Reference
GRAPHICS,HCHAR,VCHAR,DRAW

Description
The GCHAR subprogram enables you to ascertain the character code of a
character on the screen or the color value of a screen pixel.

The meaning of the value returned to the specified numeric-variable varies
according to the graphics mode.

Pattern and Text Modes

Row and column are numeric-expressions whose values specify a character
position on the screen.

The value of row must be greater than or equal to 1 and less than or equal
to 24 or 26.5(Graphics 3,1).

The value of column must be greater than or equal to 1. In Pattern mode,
column must be less than or equal to 32; in Text mode, column must be less
than or equal to 40 or 80.

GCHAR is not affected by margin settings. Row and column are relative to
the upper-left corner of the screen, not to the corner of the window
defined by the margins.

The character code of the character at the specified position is returned
to the numeric-variable. See Appendix B for a list of ASCII character
codes.

High-Resolution Mode

The pixel-row and pixel-column are numeric-expressions whose values
specify a screen pixel position.

The value of the numeric-expression pixel-row and pixel-column must be
greater than or equal to 1. In High-Resolution Mode, pixel-row must be
less than or equal to 192. See Appendix K for Graphics Modes ranges.

The value of the numeric-expression pixel-column must be greater than or
equal to 1 and less than or equal to the value of the maximum pixel
columns allowed for the Graphics mode selected. See Appendix K.
In Graphics(3,3) pixel-row 193 through 212 is available.

The color of the specified screen pixel is given by the value returned to
the numeric-variable.

Example
100 CALL GRAPHICS(3,3)
110 CALL GPOINT(106,256,X)

Returns to X the color value of a position of the center of screen.

74

MYARC ADVANCED BASIC

Examples

100 CALL GCHAR(12,16,X)
Assigns to X the ASCII code of the character at row 12, column 16 in Pattern
and Text modes.

100 CALL GCHAR(R,C,K)
Assigns to K the ASCII code of the character that is in row R, column C in
Pattern and Text modes.

75

MYARC Advanced BASIC

GOSUB --Go to a Subroutine GOSUB

Format
GOSUB line-number
GO SUB

Cross Reference
ON GOSUB, RETURN

Description

The GOSUB statement transfers program control to the specified subroutine. A
subroutine frequently is used to perform a specific operation several times in
the same program.

The line-number is a numeric-expression whose value specifies the
program statement at which the subroutine begins.

Use a RETURN statement to return program control to the statement
immediately following the GOSUB statement that called the subroutine.

To avoid unexpected results, it is recommended that you excercise care if
you use GOSUB to transfer control to or from a subprogram or into a FOR-
NEXT loop.

Subroutines may be recursive (self-referencing). To avoid constructing
infinite loops, it is recommended that you exercise care when using
recursive subroutines.

Nested Subroutines

Subroutines may be "nested"; that is, within a subroutine you can use GOSUB to
transfer control to another subroutine. Because RETURN restores program control
to the statement immediately following the most recently executed GOSUB, it is
important to exercise care when using nested subroutines.

For example, you might use GOSUB in your main program to transfer control to
a subroutine. When the computer encounters a RETURN in the second subroutine
the GOSUB in the first subroutine. Then, when a RETURN is encountered in the
first subroutine, program control returns to the statement following the GOSUB
in your main program.

Example

100 GOSUB 200
Transfers control to statement 200. That statement and the ones up to RETURN
are executed and then control returns to the statement after the calling
statement.

76

MYARC ADVANCED BASIC

Program

The following program illustrates a use of GOSUB. The subroutine at line
260 figures the factorial of the value of NUMB. The whole program figures
the solution to the equation

NUMB = X!/(Y! * (X-Y)!)

where the exclamation point means factorial. This formula is used to figure
certain probabilities. For instance, if you enter X as 52 and Y as 5, you'll
find that the number of possible five-card poker hands is 2,598,960. Both
numbers entered must be positive integers less than or equal to 69.

100 CALL CLEAR
110 INPUT "ENTER X AND Y: ":X,Y
120 IF X<Y THEN 110
130 IF X>69 OR Y>69 THEN 110
140 IF X<0 THEN PRINT "NEGATIVE"::GOTO 110 ELSE NUMB=X
150 GOSUB 260
160 NUMERATOR=NUMB
170 IF Y<0 THEN PRINT "NEGATIVE"::GOTO 110 ELSE NUMB=Y
180 GOSUB 260
190 DENOMINATOR=NUMB
200 NUMB=X-Y
210 GOSUB 260
220 DENOMINATOR=DENOMINATOR*NUMB
230 NUMB=NUMERATOR/DENOMINATOR
240 PRINT "NUMBER IS";NUMB
250 STOP
260 REM CALCULATE FACTORIAL
270 IF NUMB<2 THEN NUMB=1::GOTO 320
280 MULT=NUMB-1
290 NUMB=NUMB*MULT
300 MULT=MULT-1
310 IF MULT>1 THEN 290
320 RETURN

77

MYARC Advanced BASIC

GOTO GOTO

Format
GOTO line-number
GO TO

Cross Reference
ON GOTO

Description
The GOTO statement unconditionally transfers program control to the specified
program statement.

The line-number is a numeric-expression whose value specifies the
program statement to which unconditional program control is transferred.

To avoid unexpected results, it is recommended that you exercise care if you
use GOTO to transfer control to or from a subroutine or into a FOR-NEXT loop.

Program

The following program shows the use of GOTO in line 160. Any time that
line is reached, the program executes line 130 next and proceeds from
that new point.

100 REM ADD 1 THROUGH 100
110 ANSWER=O
120 NUMB=1
130 ANSWER=ANSWER+NUMB
140 NUMB=NUMB+1
150 IF NUMB>100 THEN 170
160 GOTO 130
170 PRINT "THE ANSWER IS";ANSWER
RUN
THE ANSWER IS 5050

78

MYARC ADVANCED BASIC

GRAPHICS --Subprogram GRAPHICS

Format
CALL GRAPHICS(graphics-mode1,graphics mode2)

Cross Reference
CHAR,CIRCLE,COLOR,DCOLOR,DRAW,DRAWTO,FILL,MARGINS,POINT,RECTANGLE,
SCREEN

Description
The GRAPHICS subprogram enables you to select the graphics-mode that
offers you the combination of text and graphics capabilities that best
suits the particular needs of your program.

Graphics-mode is defined by a pair of numbers, the first of which
defines the screen width(i.e. 1=32 characters, 2=40 characters,
3=80 characters), the second defines the mode the display is
currently operating at(i.e. text or bit-mapped).

A new Graphics mode GRAPHICS(4), a text mode with 80x24 screen is
available.

See appendix K for a more detailed description of each graphics
mode.

When you enter MYARC Advanced BASIC, the computer is in Text-2 mode.

Whenever you use the CALL GRAPHICS subprogram, the computer does the
following:

 Clears the entire screen.

 Restores the default character definitions of characters 33-126.

Restores the default foreground-color and background-color to all
characters.

Restores the default graphics foreground-color and background-
color.

 Restores the default screen color.

 Deletes all sprites.

 Resets all sprites.

 Resets the sprite magnification level to 1.

 Restores the default current position(pixel-row 1, pixel-column 1).

 Turns off all sound.

79

MYARC Advanced BASIC

Pattern Mode

In Pattern Mode, the screen is considered to be a grid 24 characters
high and 32 characters wide. Each character is 8 pixels and 8 pixels
wide. The 256 available characters are divided into 32 sets of 8
characters each. You can use the COLOR subprogram to assign a
foreground- and a background-color, from among the 16 available colors,
to each character set.

In Pattern Mode, you have access to sprites.

The DCOLOR subprogram has no effect in Pattern Mode. If you use a
CIRCLE, DRAW, DRAWTO, FILL, POINT, or RECTANGLE subprogram, the error
message Graphics mode error in line-number is displayed.

Text Modes

In Text Modes, the screen is considered to be a grid 24 characters high
and 40 characters wide (Graphics(2,1)) or 26 characters high and 80
characters wide (Graphics(3,1)). Each character is 8 pixels high and 6
pixels wide.

You can use the SCREEN subprogram to assign one background-color from
among the 16 available colors. The colors you select are assigned to
all 256 characters.

In Text Mode, you do not have access to sprites (the SPRITE subprogram
has no effect in Text Modes). Using the COLOR subprogram to assign
colors to sprites has no effect.

The DCOLOR subprogram has no effect in Text Mode. If you use a CIRCLE,
DRAW, DRAWTO, FILL, POINT, or RECTANGLE subprogram, the error message
Graphics mode error in line-number is displayed.

Graphics(1,2) and (1,3)

In these modes, the screen is considered to be a grid 192 pixels high
and 256 pixels wide.

You can use the DCOLOR subprogram to assign colors to sprites; any
other use of COLOR subprogram causes an error.

You can use the DCOLOR subprogram to assign color to the graphics you
display.

Use the COLOR subprogram only to assign colors to sprites; any other
use of the COLOR subprogram causes an error.

In these modes, you have access to sprites.

80

MYARC ADVANCED BASIC

In order to maintain compatibility with MYARC Extended BASIC II, CALL
GRAPHICS(1), (2), and (3) will be supported as follows:

CALL GRAPHICS (1) = CALL GRAPHICS(1,1)
CALL GRAPHICS (2) = CALL GRAPHICS(2,1)
CALL GRAPHICS (3) = CALL GRAPHICS(1,2)

All programs using these older calls to graphics will run with no
modification.

In these modes the computer divides each pixel-row into 32 groups of 8
pixels. The computer can assign a foreground-color and a background-color
(from among the 16 available colors) to each 8-pixel group.

Bit-Mapped Graphics Modes

In bit-mapped graphics modes, each pixel on the screen is totally independent
from any other. Each character of text is 8 pixels high and 6 pixels wide.

Graphics Mode

2,2
2,3
3,2
3,3

Example

Screen Dimension
(Pixel)
256 x 212
256 x 212
512 x 212
512 x 212

Screen Dimension
(Text)
40 x 26
40 x 26
80 x 26
80 x 26

100 CALL GRAPHICS (3)
As a statement, changes the graphics mode to High-Resolution during program
execution until execution stops or until another statement changes the
Graphics Mode to something else.

81

MYARC Advanced BASIC

HCHAR --Subprogram--Horizontal Character HCHAR

Format

CALL HCHAR(row,column,character-code[,number of repetitions])

Cross Reference
DCOLOR, GCHAR, GRAPHICS, VCHAR

Description
The HCHAR subprogram enables you to place a character on the screen and
repeat it horizontally.

Row and column are numeric-expressions whose values specify the
position on the screen where the character is displayed.

The value of row must be greater than or equal to 1, and must be less than
or equal to the total number of rows available on the screen. The value
of column must be greater than or equal to 1 and must be less than or
equal to the total number of columns available on the screen.

HCHAR is not affected by margin settings.

Character-code is a numeric-expression with a value from 0-255,
specifying the number of the character. See Appendix B for a list of
ASCII character codes.

The optional number-of-repetitions is a numeric-expression whose value
specifies the number of times the character is repeated horizontally. If
the repetitions extend past the end of a row they continue from the first
character of the next row. If the repetitions extend past the end of the
last row they continue from the first character of the first row.

If you use HCHAR to display a character on the screen, and then later use
CHAR, COLOR, or DCOLOR to change the appearance of that character, the
result depends on the Graphics Mode.

In Pattern and Text Modes, the displayed character changes to the newly
specified pattern and/or color(s).

In other modes the displayed character remains unchanged.

Examples
100 CALL HCHAR(12,16,33)
Places character 33 (an exclamation point) in row 12, column 16.

100 CALL HCHAR(1,1,ASC("!"),768)
Places an exclamation point in row 1, column 1, and repeats it 768 times,
which fills the screen in Pattern Mode.

100 CALL HCHAR(R,C,K,T)
Places the character with an ASCII code specified by the value of K in row R,
column C and repeats it T times.

82

MYARC ADVANCED BASIC

HEX$ HEX$

Format
HEX$(numeric-expression)

Description
Returns hexadecimal string equivalent to numeric-expression.

This command functions on integer values only.

Example

A$ = HEX$(-1)::PRINT A$
The computer prints:
FFFF

83

MYARC Advanced BASIC

IF THEN ELSE IF THEN ELSE

Format
IF relational-expression THEN line-numberl [ELSE line-number2]

numeric-expression statement) statement2

Description
The IF THEN statement enables you to transfer program control to a specified
program statement, or to execute a statement or series of statements, based on
the status of a condition you specify.

The condition tested by the IF THEN statement can be either a relational-
expression or a numeric-expression.

A relational-expression is "true" if it accurately describes the
relationship between the variables it references; otherwise, it is
"false."

A numeric-expression is "false" if it has a value of zero; otherwise,
it is "true."

The action specified following THEN or ELSE can be either a line-number or
a statement.

If the conditional requirement is met and you specify a line-number,
program control is transferred to the program statement located at that
line-number.

If the conditional requirement is met and you specify a statement, the
specified statement is executed. The statement may be either a single
program statement or a series of program statements separated by a
double colon (::) statement separator symbol.

If the tested condition is "true," the computer performs the action
specified following THEN.

If the tested condition is "false" and you use the ELSE option, the computer
performs the action specified following ELSE. Note: A statement separator symbol
(::) must not immediately precede ELSE, as this causes a syntax error.

If the tested condition is "false" and you do not use the ELSE option,
there are three possibilities.

IF THEN is followed by a statement, program execution proceeds with
the next program line.

IF THEN is followed by a line-number only, program execution proceeds
with the next program line.

IF THEN is followed by a line-number and a statement separator, program
execution proceeds with the statements after the statement separator. Note:
In this case, the statement separator symbol functions as an implied ELSE.

84

MYARC ADVANCED BASIC

An IF THEN statement cannot contain a DEF, DIM, FOR, NEXT, OPTION BASE,
SUB, or SUBEND instruction.

Examples
100 IF X>5 THEN GOSUB 300 ELSE X=X+5
If X is greater than 5, then 300 is executed. When the subroutine is ended
control returns to the line following this line. If X is 5 or less, X is set
equal to X+5 and control passes to the next line.

100 IF Q THEN C=C+1::GOTO 500 ELSE L=L/C::GOTO 300
If Q is not zero, then C is set equal to C+1 and control is transferred to
line 500. If Q is zero, the L is set equal to L/C and control is transferred
to line 300.

100 IF A$="Y" THEN COUNT=COUNT+1::DISPLAY AT(24,1):"HERE WE GO
AGAIN!"::GOTO 300
If A$ is not equal to "Y", then control passes to the next line. If A$ is
equal to "Y", then COUNT is incremented by 1, a message is displayed, and
control is transferred to line 300.

100 IF HOURS =40 THEN PAY=HOURS*WAGE ELSE PAY=HOURS*WAGE+.5*WAGE*
(HOURS-40)::0T=1
If HOURS is less than or equal to 40, then PAY is set equal to HOURS*WAGE
and control passes to the next line. If HOURS is greater than 40, then PAY
is set equal to HOURS*WAGE+.5*WAGE*(HOURS-40), OT is set equal to 1, and
control passes to the next line.

Program

The following program illustrates a use of IF THEN ELSE. It accepts up to
1000 numbers and then prints them in order from smallest to largest.

100 CALL CLEAR
110 DIM VALUE(1000)
120 PRINT "ENTER VALUES TO BE SORTED.":"ENTER '9999' TO END ENTRY."
130 FOR COUNT=1 TO 1000
140 INPUT VALUE(COUNT)
150 IF VALUE(COUNT)=9999 THEN 170
160 NEXT COUNT
170 COUNT=COUNT-1
180 PRINT "SORTING."
190 FOR SORT1+1 TO COUNT
200 FOR SORT2=SORT1+1 TO COUNT
210 IF VALUE(SORT1)>VALUE(SORT2) THEN

TEMP=VALUE(SORT1)::VALUE(SORT1)=VALUE(SORT2)::VALUE(SORT2)=TEMP
220 NEXT SORT2
230 NEXT SORT1
240 FOR SORTED=1 TO COUNT
250 PRINT VALUE(SORTED)
260 NEXT SORTED

85

MYARC Advanced BASIC

IMAGE IMAGE

Format
IMAGE format-string

Cross Reference
DISPLAY USING, PRINT USING

Description
The IMAGE statement enables you to specify the format in which numbers or
strings are printed or displayed by a PRINT USING or DISPLAY USING statement.

The format-string is a string constant.

A format-string containing a quotation mark or leading or trailing
spaces must be enclosed in quotation marks. A format-string included
in a PRINT USING or DISPLAY USING statement (rather than as part of an
image statement) must be enclosed in quotation marks.

Any character can be part of a format-string. Certain combinations of
characters are interpreted as format-fields, as described below.

An IMAGE statement is not executed.

An IMAGE statement cannot be part of a multiple-statement line.

Format-Fields

A format-string can consist of one or more format-fields, each specifying
the format of one print-item. Format-fields can be separated by any
character except a decimal point or a pound sign.

A format-field may consist of the following characters:

A pound sign (#) is replaced by a character from a print-item in the print-
list of a PRINT USING or DISPLAY USING instruction. Allow one pound sign
for each digit or character; allow one pound sign for the minus sign if
necessary. If you do not allow as many pound signs as are necessary to
represent the print-item, each pound sign is replaced by an
asterisk (*). If you use more pound signs than are necessary to
represent the print-item, each pound sign is replaced by a space. Added
spaces precede a number (which right-justifies the number); added spaces
follow a string (which left-justifies the string).

To indicate that a number is to be given in scientific notation,
circumflexes (1 must be given for the E and power numbers. There must
be four or five circumflexes, and 10 or fewer characters (minus sign,
pound signs, and decimal point) when using the E format.

The decimal point separates the whole and fractional portions of
numbers, and is printed where it appears in the IMAGE statement.

86

MYARC ADVANCED BASIC

All other letters, numbers, and characters are printed exactly as they
appear in the IMAGE statement.

Format-string may be enclosed in quotation marks. If it is not enclosed
in quotation marks, leading and trailing spaces are ignored. However,
when used directly in PRINT...USING or DISPLAY...USING, it must be
enclosed in quotation marks.

Each IMAGE statement may have space for many images, separated by any
character except a decimal point. If more values are given in the PRINT
USING or DISPLAY USING statement than there are images, then the images
are reused, starting at the beginning of the statement.

If you wish, you may put format-string directly in the PRINT...USING or
DISPLAY USING statement immediately following USING. However, if a format-
string is used often, it is more efficient to refer to an IMAGE statement.

Examples

100 IMAGE $####.###
110 PRINT USING 100:A
IMAGE $####.### allows printing of any number from -999.999 to 9999.999. The
following illustrates how some sample values would be printed or displayed:

VALUE

-999.999
-34.5
0
12.4565
6312.991
99999999

APPEARANCE

$-999.999
$ -34.500
$ 0.000
$ 12.457
$6312.999
$********

100 IMAGE ANSWERS ARE ### AND ##.##
110 PRINT USING 100:A,B
Allows printing of two numbers. The first may be from -99 to 999 and the
second may be from -9.99 to 99.99. The following illustrates how some sample
values would be printed or displayed:

VALUES APPEARANCE

-99 -9.99 ANSWERS ARE -99 AND -9.99
-7 -3.459 ANSWERS ARE -7 AND -3.46
0 0 ANSWERS ARE 0 AND .00
14.8 12.75 ANSWERS ARE 15 AND 12.75
795 852 ANSWERS ARE 795 AND *****

-984 64.7 ANSWERS ARE *** AND 64.70

300 IMAGE DEAR ####
310 PRINT USING 300:X$
Allows printing a four-character string. The following illustrates how some
sample values would be printed or displayed:

87

MYARC Advanced BASIC

VALUES APPEARANCE

JOHN DEAR JOHN,
TOM DEAR TOM ,
RALPH DEAR ****,

Programs

The following program illustrates a use of IMAGE. It reads and prints
seven numbers and their totals.

100 CALL CLEAR
110 IMAGE $####.##
120 IMAGE " ####.##"
130 DATA 233.45,-147.95,8.4,37.263,-51.299,85.2,464
140 TOTAL=O
150 FOR A=1 TO 7
160 READ AMOUNT
170 TOTAL=TOTAL+AMOUNT
180 IF A=1 THEN PRINT USING 110:AMOUNT ELSE PRINT USING 120:AMOUNT
190 NEXT A
200 PRINT " ----
210 PRINT USING "$####.##":TOTAL
RUN
$ 233.45
-147.95

8.40
37.26
-51.30
85.20
464.00

$ 629.06

Lines 110 and 120 set up the images. They are the same except for the dollar
sign in line 110. To keep the blank space where the dollar sign was, the
format-string in line 120 is enclosed in quotation marks.

Line 180 prints the values using the IMAGE statements.

Line 210 shows that the format can be put directly in the PRINT USING
statement.

The amounts are printed with the decimal points aligned.

The following program shows the effect of using more values in the PRINT
USING statement than there are images in the IMAGE statement.

100 IMAGE ###.##,###.#
110 PRINT USING 100:50.34,50.34,37.26,37.26
RUN
50.34, 50.3
37.26, 37.3

88

MYARC ADVANCED BASIC

INIT --Subprogram--Initialize INIT

Format
CALL INIT

Cross Reference
LINK, LOAD

Description
The INIT subprogram reserves memory space to enable the computer to run
assembly-language
subprograms. It also removes the pointers in memory to any previously
loaded assembly-
language program.

The amount of memory set aside for assembly-language programs is 49,152
bytes.

The following is how the memory is allocated;

 Total memory block >2000->E000 49152
 BASIC utilities table >DF68->DFFF 152
 BASIC utilities >2000->24F4 1268
 Available for Programs 47732

If you are loading multiple assembly-language programs and they are RORG
"type" and the total bytes do not exceed the total bytes available then
CALL INIT is only required before the first program is loaded.

INP INP

Format
CALL INP(port,databyte[,databyte...])

Cross Reference
OUTP

You may use CALL INP either as a program statement or a command.
Use only ports 1 or 2 as the PIO or PIO/2 ports respectively.
Sends a databyte to a port.

 The databyte may be any integer between 0 and 255.

Data is received and sent internally through various components
within the computer, known as ports.

The INP statement is used to obtain direct control of a device such
as the keyboard, sound, etc.

 INP is the complement function to the OUTP command.

89

MYARC Advanced BASIC

INPUT INPUT

Format
Keyboard Input
 INPUT [input-prompt:]variable-list
File input
 INPUT #file-number[,REC record-number]

Cross Reference
ACCEPT, EOF, LINPUT, OPEN, REC, TERMCHAR

Description
The INPUT statement suspends program execution to enable you to enter
data from the keyboard. INPUT can be used to retrieve data from an
external device.

The variable-list consists of one or more variables separated by
commas. Values are assigned to the variables in the variable-list
in the order they are input. A value assigned to a numeric
variable must be a number; a value assigned to a string variable
may be a string or a number.

Variables are assigned to a values sequentially in the variable-list. A
value can be assigned to a variable, and then that variable can be used
as a subscript later in the same variable-list.

Input from the Keyboard

If you do not specify a file-number, the program pauses to accept input
from the keyboard.

If you enter an input-prompt, it appears at the beginning of the
input field, followed immediately by the flashing cursor.

The input-prompt is a string expression; if you use a string
constant, you must enclose it in quotation marks.

If you do not enter an input-prompt, a question mark (?) appears
at the beginning of the input field,followed by a space. The
flashing cursor appears in the character position following the
space.

The input field begins in the far left column of the bottom row of the
screen window defined by the margins. You can enter up to 157
characters from the keyboard; however, an exceptionally long entry may
not be processed correctly by the computer.

The values entered to the variable-list of one INPUT statement must be
separated by commas. You must enter the same number of values as there
are variables in the variable-list.

A string value entered from the keyboard can optionally be enclosed in
quotation marks. However, a string containing a comma, a quotation
mark, or

90

MYARC ADVANCED BASIC

leading or trailing spaces must be enclosed in quotation marks. A quotation
mark within a string is represented by two adjacent quotation marks.

You normally press ENTER to complete keyboard input; however, you can also
use Alt 7(AID), Alt 9(BACK), Alt 5(BEGIN), CLEAR, Alt 6(PROC'D), DOWN ARROW,
or UP ARROW. You can use the TERMCHAR function to determine which of these
keys was pressed to exit from the previous INPUT, LINPUT, or ACCEPT
instruction.

Note that pressing CLEAR during keyboard input normally causes a break in the
program. However, if your program includes an ON BREAK NEXT statement, you
can use CLEAR to exit from an input field.

The computer sounds a short tone to signal that it is ready to accept
keyboard input.

Examples

100 INPUT X
Allows the input of a number.

100 INPUT X$,Y
Allows the input of a string and a number.

100 INPUT "ENTER TWO NUMBERS: ":A,B
Displays the prompt ENTER TWO NUMBERS and then allows the entry of two
numbers.

100 INPUT A(J),J
First evaluates the subscript of A and then accepts data into that element of
the array A. Then a value is accepted into J.

100 INPUT J,A(J)
First accepts data into J and then accepts data into the Jth element of the
array A.

Program

The following program illustrates a use of INPUT from the keyboard.

100 CALL CLEAR
110 INPUT "ENTER YOUR FIRST NAME: ":FNAME$
120 INPUT "ENTER YOUR LAST NAME: ":LNAME$
130 INPUT "ENTER A THREE DIGIT NUMBER: ":DOLLARS
140 INPUT "ENTER A TWO DIGIT NUMBER: ":CENTS
150 IMAGE OF $###.## AND THAT IF YOU
160 CALL CLEAR
170 PRINT "DEAR ";FNAME$;",": :
180 PRINT " THIS IS TO REMIND YOU"
190 PRINT "THAT YOU OWE US THE AMOUNT"
200 PRINT USING 150:DOLLARS+CENTS/100
210 PRINT "IF YOU DO NOT PAY US, YOU WILL SOON"
220 PRINT "RECEIVE A LETTER FROM OUR"

91

MYARC Advanced BASIC

230 PRINT "ATTORNEY, ADDRESSED TO"
240 PRINT FNAME$;" ";LNAME$;"!": :
250 PRINT TAB(15);"SINCERELY,": : :TAB(15);"I. DUN YOU": :
260 GOTO 260
(Press CLEAR to stop the program.)

Lines 110 through 140 allow the person using the program to enter data, as
requested with the input-prompts.

Lines 170 through 250 construct a letter based on the input. (Be certain to
enter the colons exactly as indicated, because they control line spacing.)

Input from a File

If you include a file-number, input is accepted from the specified device.

The file-number is a numeric-expression whose value specifies the
number of the file as assigned in its OPEN instruction.

If necessary, file-number is rounded to the nearest integer.

If you use the REC option, the record-number is a numeric-expression
whose value specifies the number of the record from which you want to
input to the variable-list. The records in a file are numbered
sequentially, starting with zero. The _REC option can be used only with
a file opened for RELATIVE access.

If necessary, record-number is rounded to the nearest integer.

You can accept input only from files opened in INPUT or UPDATE mode. DISPLAY
files must have fewer than 161 characters in each record to be used with an
INPUT statement; however, an exceptionally long record may not be processed
correctly by the computer.

If there are more variables in the variable-list than there are values in
the current record, the computer proceeds as follows:

In the case of INTERNAL FIXED records, null strings are assigned to
the remaining variables, causing a program error if any of the
remaining variables are numeric.

For other records, the computer reads the next record in the file, and
uses its values to complete the variable-list.

If there are more values in the current record than are necessary to fill
the variable-list, the remaining values are discarded. However, if the
variable-list ends with a comma, the computer is placed in an input-pending
condition. The remaining values are assigned to the variables in the
variable-list of the next INPUT statement unless that statement includes
the REC option, in which case the remaining values are discarded.

92

MYARC ADVANCED BASIC

Examples

100 INPUT #1:X$
Puts into X$ the next value available in the file that was opened as #1.

100 INPUT #23:X,A,LL$
Puts into X, A, and LL$ the next three values from the file that was opened
as #23 with data in INTERNAL format.

100 INPUT #11,REC 44:TAX
Puts into TAX the first value of record number 44 of the file that was opened
as #11 with RELATIVE file organization.

100 INPUT #3:A,B,C,
110 INPUT #3:X,Y,Z
Puts into A, B, and C the next three values from the file opened as #3. The
comma after C creates an input-pending condition, and because the INPUT
statement in line 110 has no REC clause, the computer assigns to X, Y, and Z
data values beginning where the previous INPUT statement stopped.

Program

The following program illustrates a use of the INPUT statement. It opens a
file on disk drive 1 called TEST and writes 5 records to the file. It then
goes back and reads the records and displays them on the screen.

100 OPEN #1:"DSK1.TEST",SEQUENTIAL,INTERNAL,OUTPUT,FIXED 64
110 FOR A=1 TO 5
120 PRINT #1:"THIS IS RECORD",A
130 NEXT A
140 CLOSE #1
150 CALL CLEAR
160 OPEN #1:"DSK1.TEST",SEQUENTIAL,INTERNAL,INPUT,FIXED 64
170 PRINT
180 FOR B=1 TO 5
190 INPUT #1:A$,C
200 PRINT A$;C
210 NEXT B
220 CLOSE #1
RUN

THIS IS RECORD 1
THIS IS RECORD 2
THIS IS RECORD 3
THIS IS RECORD 4
THIS IS RECORD 5

93

MYARC Advanced BASIC

INT --Function--Integer INT

Format
INT(numeric-expression)

Type
Real

Description

The INT function returns the largest integer not greater than the value of
the numeric-expression.

If the value of the numeric-expression is an integer, INT returns the
value of the numeric-expression itself. If the numeric-expression is
not an integer, INT returns the largest integer not greater than the
numeric-expression.

Examples

100 PRINT INT(3.4)
Prints 3.

100 X=INT(3.9)
Sets X equal to 3.

100 P=INT(3.9999999999)
Sets P equal to 3.

100 DISPLAY AT(3,7):INT(4.0)
Displays 4 at the third row, seventh column of the current screen window.

100 N=INT(-3.9)
Sets N equal to -4.

100 K=INT(-3.00000001)
Sets K equal to -4.

94

MYARC ADVANCED BASIC

JOYST --Subprogram--Joystick JOYST

Format
CALL JOYST(key-unit,x,y)

Description
The JOYST subprogram enables you to ascertain the position of either of the
Joystick Controllers.

The numeric-expression key-unit can have a value of 1 or 2,
specifying the joystick you are testing.

The position of the specifed joystick is returned in the numeric
variables x and y as follows:

POSITION X

Center 0 0
Up 0 (+)4
Upper Right (+)4 (+)4
Right (+)4 0
Lower Right (+)4 -4
Down 0 -4
Lower Left -4 -4
Left -4 0
Upper Left -4 (+)4

If the specified joystick is not connected to the computer, x and y are
both returned as O.

Example

100 CALL JOYST(1,X,Y)
Returns values in X and Y according to the position of joystick number 1.

Program

The following program illustrates a use of the JOYST subprogram. It creates a
sprite and then moves it around according to the input from a joystick.

100 CALL CLEAR
110 CALL SPRITE(#1,33,5,96,128)
120 CALL JOYST(1,X,Y)
130 CALL MOTION(#1,-Y*4,X*4)
140 GOTO 120
(Press CLEAR to stop the program.)

95

MYARC Advanced BASIC

KEY KEY

Expanded usage of the KEY command has been incorporated into the MYARC 9640.

Using the familiar command CALL KEY, the KEY subprogram is invoked. This
KEY subprogram has been enlarged to also cover MYARC Advanced BASIC.

In addition, using the newly added KEY (not CALL KEY) commands, you can now
change or tailor the functions performed by individual program function keys
in various ways to accomodate your own programming needs. Three different
constructs are used to change and/or utilize your redefined keys.

CALL KEY --subprogram

Format
CALL KEY(key-unit,key,status)

Description

The KEY subprogram enables you to transfer one character from the keyboard
directly to a program.

CALL KEY can sometimes replace an INPUT statement, especially for the
input of a single character.

The numeric-expression key-unit can have a value from 0 to 6, as
explained below.

The character code of the key pressed is returned in the numeric
variable key. If no key is pressed, a value of 0 is returned.

See Appendix B for a list of the available characters.

The keyboard status is returned in the numeric variable status as
explained below.

Because the character represented by the key pressed is not displayed on
the screen, the information already on the screen is not disturbed.

Key-Unit Options

The value you specify for the key-unit determines what portion of the
keyboard is active and how the key pressed is interpreted.

KEY-UNIT RESULT

0 Console keyboard, in mode previously specified by CALL
KEY.

1 Only the left side of the keyboard is active.

2 Only the right side of the keyboard is active.

96

MYARC ADVANCED BASIC

3 Places keyboard in the same mode as mode 0.

4 Remaps the keyboard in the PASCAL mode. Both upper- and lower-
case alphabetical character codes are returned by the
computer. It is not recommended to use this mode until MDOS
code is changed. This effects all versions (2.21 and prior).
A mistake in programming will cause this mode to return
erroneous values.

5 Places the key board in 99/4A BASIC mode. Both upper- and

lower-case alphabetical character codes are returned by the
computer.

Status
The value returned as the status can be interpreted as follows:

-1 The same key was pressed as was returned the last time KEY was
called.

 0 No key was pressed.

1 A different key was pressed than was returned the last time
KEY was called.

See Appendix M for the return values of all KEY modes.

Example

100 CALL KEY(0,K,S)
Returns in K the ASCII code of any key pressed on the keyboard except
SHIFT, CTRL, ALT, and CAPS and in S a value indicating whether a key was
pressed.

Program
The following program illustrates a use of the KEY subprogram. It creates
a sprite and then enables you to move it around by using the arrow keys(E,
S, D, and X) without pressing ALT. Note that line 130 returns to line
120 if no key has been pressed.

To stop the sprite's movement, press any key(except the arrow keys) on
the left side of keyboard.

100 CALL CLEAR
110 CALL SPRITE(#1,33,5,96,128)
120 CALL KEY(1,K,S)
130 IF S=0 THEN 120
140 IF K=5 THEN Y=-4
150 IF K=0 THEN Y=4
160 IF K=2 THEN Y=-4
170 IF IF K=3 THEN X=4
180 IF K=1 THEN X,Y=0
190 IF K>5 THEN X,Y=0
200 CALL MOTION(#1,Y,X)
210 GOTO 120
(Press CLEAR to stop the program.)

97

MYARC Advanced BASIC

150 IF K=0 THEN Y=4 160 IF K=2 THEN Y=-4
170 IF K=3 THEN X=4
180 IF K=1 THEN X,Y=O
190 IF K>5 THEN X,Y=0
200 CALL MOTION(#1,Y,X)
210 GOTO 120
(Press CLEAR to stop the program.)

KEY COMMANDS FOR REDEFINING FUNCTION KEYS

KEY

Format
KEY(numeric-expression)=string expression

Description
The KEY numeric expression, string expression command allows you to
redefine the associated string of a specified function key. The purpose
of this command is to allow you to redefine the default for any
specified function key.

Upon invoking BASIC, function KEYS 1-10 are predefined as follows:

 F1 LIST F6 MERGE F11 DRIVE/DIR
 F2 RUN F7 NUM F12 PRINTER
 F3 OLD F8 TRACE
 F4 SAVE F9 PRINT
 F5 CON F10 KEY

Numeric expression defines the function key number that is being
redefined. Valid function key numbers are 1-12.

Note: F11 and F12 can only be used for their defined function i.e.
KEY(11 or 12)=string expression. If the SCROLL LOCK is on,
pressing the function key returns the string currently assigned to
the function key in command mode and when a program is calling for
input.

Pressing the function key with SCROLL LOCK on, will return its
associated string in any screen mode. Use KEY ON or KEY OFF to
display /remove function key menu in screen modes (3,1), (3,2),
(3,3).

Using Hchar at row 25, a second menu can be added of user defined
menu items. User must provide a routine in their program to use
the user defined menu. String expression defines the string that
is to be returned when the function key is pressed.

Either in the imperative mode (cursor blinking), or when a program is
asking for input while running, pressing the function key will return
its associated string.

You can use the command KEY LIST to view the complete list on the
screen.

Format
ON KEY (numeric expression) GOSUB line number

98

KEY(numeric-expression)=ON/OFF
KEY STOP

Description
The ON KEY (numeric expression GOSUB line number and KEY(numeric
expression) =ON/OFF commands enable a running program to be halted and
execution transferred to a predefined subprogram when a function key
is pressed.

To successfully allow the program to transfer to the desired
subroutine, you must first tell MYARC Advanced BASIC which function key
is to transfer control to where.

The numeric expression must be a valid function key number from 1 to
15.

Keys are mapped the same as

CALL KEY mode 5. See Appendix M. Use F1 thru F9 and the following;
F10=LT ARROW F11=RT ARROW F12=DWN ARROW F13=UP ARROW

F14=ENTER F15=ALT =

KEY STOP clears ALL on key gosub line numbers. You must issue a new on
key to reactivate.

The line number tells the basic interpreter where the subroutine is to
start once.

99

MYARC Advanced BASIC

KILL KILL

Format
KILL file-specification

Cross Reference
CLOSE

Description
The KILL instruction removes a file from an external storage device.
Although the file is not physically erased, the space it occupies becomes
available for you to store another file in the future.

You can use KILL as either a program statement or a command.

The file-specification indicates the name of the file to be deleted. The
file-specification is a string-expression; if you use a string constant,
you must enclose it in quotation marks.

You can also remove files stored on some external devices by using the KILL
option in the CLOSE instruction.

For more information about the options available with a particular device,
refer to the owner's manual that comes with that device.

Example

KILL "DSK1.MYFILE"
Deletes the file named MYFILE from the diskette in disk drive 1.

Program

The following program illustrates a use of KILL.

100 INPUT "NAME OF FILE TO BE DELETED: ":X$
110 KILL X$

NOTE: For TI 99/4A PROGRAMS

Delete will no longer be used to delete files from disk storage device
(see KILL, CLOSE, FILES). However programs that contain a "DELETE" file
statement will execute exactly as they did under TI BASIC or TI EXTENDED
BASIC. The token used internally will now be occupied by the KILL
command. As long as the program is stored in tokenized form (program
file, or DV163 merge format) the execution will not be affected. On

listing the program the word "KILL" will be listed instead of "DELETE".

100

MYARC ADVANCED BASIC

LEFT$ LEFT$

Format
LEFT$(string$,numvar)

Cross Reference
SEG$, R1GHT$, POS

Description
LEFT$() returns the leftmost portion of the string represented by string$ of
length numvar.

The LEFT$ function creates a new string but does not destroy the original
string.

LEFT$(A$,5) is equivalent to SEG$(A$,1,5) if A$ is at least 5 characters
long.

If the string is shorter then the length specified, the string LEFT$ function
will pad the string with blank spaces rather than return an error condition

LEFT$ can be used with numerical data if the number is first converted to
a string using the STR$(n) function.

Example

100 B$=LEFT$("1234",3)
110 PRINT B$
120 C$=VAL(LEFT$(STR$(-1234),4)
130 PRINT C$
RUN
123
-123

LEFT$ can also be used to make a program user friendly by separating first
from last names, checking the first character of a response etc.

Example

100 INPUT "What is your full name please ":NAME$
110 SP=POS(NAME$," ",1)
120 FIRST$=LEFT$(NAME$,SP-1)
130 INPUT FIRST$&" IS THE CAPITOL OF THE UNITED STATES BROOKLYN ?":ANSWER$
135 A$=LEFT$(ANSWER$,1)
140 IF A$="Y" OR A$="y" THEN PRINT "I'M SORRY ";FIRST$;" that is not

correct"::GOTO 170
150 if A$="N" OR "n" THEN PRINT "* THAT IS RIGHT"::STOP
160 PRINT "TYPE YES or NO as a response please "::GOTO 130
RUN
What is your full name please ? ABRAHAM LINCOLN
ABRAHAM IS THE CAPITOL OF THE UNITED STATES BROOKLYN ? NO
THAT IS RIGHT

101

MYARC Advanced BASIC

LEN --Function--Length LEN

Format
LEN(string-expression)

Type
DEFINT

Description
The LEN function returns the number of characters in the string specified by
the string-expression.

If the string-expression is a null string, LEN returns a zero.

Remember that a space is a valid character and is considered to be part
of the length of a string.

Examples

100 PRINT LEN("ABCDE")
Prints 5.

100 X=LEN("THIS IS A SENTENCE.")
Sets X equal to 19.

100 DISPLAY LEN("")
Displays 0.

100 DISPLAY LEN(" ")
Displays 1.

100 A$="DAVID"
110 DISPLAY LEN(A$)
Displays 5 when A$ equals DAVID.

102

MYARC ADVANCED BASIC

LET LET

Format
[LET]variable-list=expression

Description
The LET instruction, often called the "assignment" instruction, enables you
to assign values to variables.

You can use LET as either a program statement or a command.

The variable-list consists of one or more variables separated by commas.
Do not mix numeric and string variables in the same variable-list.
However, you can include both DEFINT and REAL numeric variables in the
same variable-list.

The value of expression is assigned to all variables in the variable-
list. If the variable-list contains numeric variables, the expression
must be a
numeric-expression. If the variable-list contains string variables,
the expression must be a string-expression.

The word LET can be optionally omitted from instruction.

Examples

100 T=4
Assigns to T the value 4.

100 X,Y,Z=12.4
Assigns to X, Y, and Z the value 12.4.

100 A=3<5
Assigns -1 to A because it is true that 3 is less than 5.

100 B=12<7
Assigns 0 to B because it is not true that 12 is less than 7.

100 L$,D$,B$="B"
Assigns to L$, D$, and B$ the string constant "8".

103

MYARC Advanced BASIC

Program

The following program illustrates a use of LET.

100 K=1
110 K,A(K)=3
120 PRINT K;A(1)
130 PRINT A(3);A(K)
RUN
33
00

In line 100, the variable K is assigned the value 1.

In line 110, the variable K and the array element A(K) are assigned the
value of 3. Note that when line 110 is executed, the subscript K is not
assigned a new value, but has the same value it had before the line was
executed. Therefore, A(K) is an expression equivalent to A(1), referring
to the same element of the array.

In line 120, the values of K and A(1) are printed.

When line 130 is executed, K has a value of 3; therefore, A(K) is now
an expression equivalent to A(3). Both expressions have a value of 0 (the
default value) because no value has been assigned to this element of
array.

104

MYARC ADVANCED BASIC

LINK --Subprogram LINK

Format
CALL LINK(subprogram-name[,parameter-list])

Cross Reference
INIT, LOAD, SUB

Description
The LINK subprogram enables you to transfer control from a MYARC Advanced
BASIC program to an assembly-language subprogram.

The subprogram-name is an entry point in an assembly-language
subprogram that you have previously loaded into memory with the LOAD
subprogram. The subprogram-name is a string-expression; if you use a
string constant, it must be enclosed in quotation marks.

The optional parameter-list consists of one or more parameters,
separated by commas, that are to be passed to the assembly-language
subprogram. The contents of the parameter-list depend on the particular
subprogram you are accessing.

The rules for passing parameters to an assembly-language subprogram
are the same as the rules for passing parameters to a MYARC Advanced
BASIC subprogram (see SUB).

Example

100 CALL LINK("START",1,3)
Links the MYARC Advanced BASIC program to the assembly-language subprogram
START, and passes the values 1 and 3 to it.

105

MYARC Advanced BASIC

LINPUT --Line Input LINPUT

Format
Keyboard Input

LINPUT [input-prompt:]string-variable
File Input

LINPUT #file-number[,REC record-number]:string-variable

Cross Reference
ACCEPT, EOF, INPUT, OPEN, TERMCHAR

Description
The LINPUT statement suspends program execution to enable you to enter a
line of unedited data from the keyboard. LINPUT can be used also to retrieve
an unedited record from an external device.

LINPUT assigns an entire line, a file record, or the remaining portion
of a file record (if there is an input-pending condition) to the string-
variable.

See INPUT for an explanation of keyboard- and file-input, and input
options.

No editing is performed on the input data. All characters (including commas,
quotation marks, colons, semicolons, and leading and trailing spaces) are
assigned to the string-variable as they are encountered.

The maximum value that can be input from the keyboard is 255 characters.

LINPUT is frequently used instead of INPUT when the input data may include a
comma. (A comma is not accepted as input by the INPUT statement, except as part
of a string enclosed in quotation marks.)

To use LINPUT for file input the file must be in DISPLAY format.

You normally press ENTER to complete keyboard input; however, you can also
use AID, BACK, BEGIN, CLEAR, PROC'D, DOWN ARROW, or UP ARROW. You can use
the TERMCHAR function to determine which of these keys was pressed to exit
from the previous ACCEPT, INPUT, or LINPUT instruction.

Note that pressing CLEAR during keyboard input normally causes a break in the
program. However, if your program includes an ON BREAK NEXT statement, you
can use CLEAR to exit from an input field.

Examples

100 LINPUT L$
Assigns to L$ anything typed before ENTER is pressed.

100 LINPUT "NAME: "NM$
Displays NAME: and assigns to NM$ anything typed before ENTER is pressed.

106

MYARC ADVANCED BASIC

100 LINPUT #1,REC M:L$(M)
Assigns to L$(M) the value that was in record M of the file that was opened
as #1 with RELATIVE DISPLAY file organization.

Program

The following program illustrates a use of LINPUT. It reads a previously
existing file and displays only the lines that contain the word "THE."

100 OPEN #1:"DSK1.TEXT1",INPUT,FIXED 80,DISPLAY
110 IF EOF(1) THEN CLOSE #1 :: STOP
120 LINPUT #1:A$
130 X=POS(A$,"THE",1)
140 IF X>0 THEN PRINT A$
150 GOTO 110

NOTE:
Remember to press the two keys, Control + Break whenever the Manual
refers to "CLEAR".

107

MYARC Advanced BASIC

LIST LIST

Format
List to the screen

LIST [line-number-range]
List to a File (or Device)

LIST "file-specification"[:line-number-range]

Cross Reference
LLIST

Description
The LIST command displays the program (or a portion of it) currently in
memory. You can also use LIST to output the program listing to an external
device.

The optional line-number-range specifies the portion of the program to
be listed. If you do not enter a line-number-range, the entire program
is listed. The program lines are always listed in ascending order.

If you enter a file-specification, the program listing is output to
the specified file or device. The file-specification, a string
constant, must be enclosed in quotation marks.

The program listing is output as a SEQUENTIAL file in DISPLAY format
with VARIABLE records (see OPEN); the file-specification option can be
used only with devices that accept these options. For more information
about listing a program on a particular device, refer to the owner's
manual that comes with that device. If you do not enter a file-
specification, the program listing is displayed on the screen.

You can stop the listing at any time by pressing CLEAR. Pressing any other
key (except SHIFT, ALT, or CTRL) causes the listing to pause until you
press a key again.

The LIST command only works with peripherals that support DISPLAY/VARIABLE type
records.

108

MYARC ADVANCED BASIC

The Line-Number-Range

A line-number-range can consist of a single line number, a single line
number followed by a hyphen, a single line number preceded by a hyphen,
or a range of line numbers.

 COMMAND LINES LISTED

 LIST All lines.

 LIST X Line number X only.

LIST X- Lines from number X to the highest line
number, inclusive.

LIST -X Lines from the lowest line number to line

number X, inclusive.

LIST X-Y or All lines from line number X to line number
Y, inclusive.

 LIST X Y

If the line-number-range does not include a line number in your program,
the following conventions apply:

If line-number-range is higher than any line number in the program,
the highest-numbered program line is listed.

If line-number-range is lower than any line number in the program,
the lowest-numbered program line is listed.

If line-number-range is between lines in the program, the next
higher numbered program line is listed.

Examples

LIST
Lists the entire program in memory on the display screen.

LIST 100
Lists line 100.

LIST 100-
Lists line 100 and all after it.

LIST -200
Lists all lines up to and including line 200.

LIST 100-200
Lists all lines from 100 through 200.

109

MYARC Advanced BASIC

LLIST LLIST

Format
LLIST[linenum1][-][linenum2][W/w] or [W/w(width)]

Cross Reference
LIST

Description
Same line format as LIST except that LLIST automatically sends list to default print
device.

 COMMAND LINES LISTED

 LLIST All lines.

 LLIST X Line X only.

 LLIST X- Lines from X to the highest line number, inclusive.

LLIST -X Lines from the lowest line number to line number X,
inclusive.

LLIST X-Y or X Y All lines from line numbers X to Y, inclusive

 LLIST X-Y,W or W132 All lines from line numbers X to Y, I
 Inclusive are printed using a page width of

 W to a maximum of 160.

If the line-number-range does not include a line number in the program, the
following conventions apply.

If line-number-range is higher than any line number in the program, the
highest-numbered program line is listed.

If line-number-range is lower than any line number in the program, the lowest-
numbered program line is listed.

If line-number-range is between lines in the program, the next higher numbered
program line is listed.

Width is the number of characters across the page and the default is 80 characters.
W has a default of 160 characters. W can be upper or lower case.

If the page width depends upon an escape code or control code sequence, then that
sequence must be sent to the print device before using LLIST. This can be
accomplished by the following method.

From the command prompt;
For 132 or 136 width printer OPEN #X:"PIO"::PRINT #X:CHR$(15)::CLOSE #1
For 160(condensed elite) width OPEN #x:"PIO"::PRINT#X:CHR$(15);CHR$(27);CHR$(77)
::CLOSE #1

The default device can be changed by changing the name of LPT.

LPT device.filename from command prompt or KEY(12)="PIO" or "RS232.[options]" from
command prompt or within a program.

Any width greater than 80 or less than 80 will create a file of that length on a
storage device.

110

MYARC ADVANCED BASIC

Examples

LLIST
Prints the entire program in memory on the display screen.

LLIST 100
Prints line 100.

LLIST 100-
Prints line 100 and all after it.

LLIST -200
Prints all lines up to and including line 200.

LLIST 100-200
Prints all lines from 100 through 200.

LLIST 100-200,132
Prints all lines from 100 through 200 on a page width of 132 characters.

111

MYARC Advanced BASIC

LOAD --Subprogram LOAD

Format
File Only

CALL LOAD(file-specification-list)
Data Only

CALL LOAD(address,byte-list[,"",address,byte-list[,...]])
File and Data

CALL LOAD(file-specification-list,address,byte-list[,...])
CALL LOAD(address,byte-list,file-specification-list[,...])

Cross Reference
INIT, LINK, PEEK, PEEKV, POKEV, VALHEX

Description
The LOAD subprogram enables you to load assembly-language subprograms into
memory. You can also use LOAD to assign values directly to specified CPU
(Central Processing Unit) memory addresses. You can use the POKEV subprogram
to assign values to VDP (Video Display Processor) memory.

To load an assembly-language subprogram, specify a file-specification-list;
to assign values to CPU memory, specify an address and a byte-list (an
address must always be followed by a byte-list).

You must enter at least one parameter. The first parameter you specify can
be either a file-specification-list or an address.

If you wish to follow an address and byte-list with another address and
byte-list, enter a file-specification-list or a null string (two-adjacent
quotation marks) as a separator.

The optional file-specification-list consists of one or more
file-specifications separated by commas. A file-specification is a
string-expression; if you use a string constant, you must enclose it
in quotation marks.

Each file-specification names an assembly-language object (program) file
to be loaded into memory. The specified file can include subprogram names,
so that the subprograms can be executed by the LINK subprogram.

The object file to be loaded must be in DISPLAY format with FIXED
records (see OPEN). For more information about the file options
available with a particular device, refer to the owner's manual that
comes with that device.

You can optionally load bytes of data to a specified CPU memory address.
The address specifies the first address where the data is to be loaded;
if the byte-list specifies more than one byte of data, the bytes are
assigned to sequential memory addresses starting with the address you
specify.

112

MYARC ADVANCED BASIC

The numeric-expression address must have a value from -32768 to 32767
inclusive.

You can specify an address from 0 to 32767 inclusive by specifying the
actual address.

You can specify an address from 32768 to 65535 inclusive by subtracting
65536 from the actual address. This will result in a value from -32768 to
-1 inclusive.

If you know the hexadecimal value of the address, you can use the VALHEX
function to convert it to a decimal numeric-expression, eliminating the
possible need for calculations.

If necessary, the address is rounded to the nearest integer.

The byte-list consists of one or more bytes of data, separated by
commas, that are to be loaded into CPU memory starting with the
specified address.

Each byte in the byte-list must be a numeric-expression with a value
from 0 to 32767. If the value of a byte is greater than 255, it is
repeatedly reduced by 256 until it is less than 256. If necessary, a
byte is rounded to the nearest integer.

Note that you must use the INIT subprogram to reserve memory space before
you use LOAD to load a subprogram.

If you call the LOAD subprogram with invalid parameters or load an object file
with absolute (rather than relocatable) addresses, the computer may function
erratically or cease to function entirely. If this occurs, turn off the
computer, wait several seconds, then turn the computer back on again.

The Loader

LOAD uses a "relocatable linking" loader.

Because it is "relocatable," you cannot use LOAD to specify a memory address
at which you want to load a file. However, the file you are loading may specify
an absolute load address if it includes an AORG directive.

Because it is "linking", the object files specified in the file-
specification-list can reference each other.

113

MYARC Advanced BASIC

LOCATE --Subprogram LOCATE

Format
CALL LOCATE(#sprite-number,pixel-row,pixel-column[,...])

Cross Reference
DELSPRITE, SPRITE

Description
The LOCATE subprogram enables you to change the location of one or more
sprites.

The sprite-number is a numeric-expression whose value specifies the
number of a sprite as assigned by the SPRITE subprogram.

The pixel-row and pixel-column are numeric-expressions whose values
specify the screen pixel location of the pixel at the upper-left
corner of the sprite.

LOCATE can cause a sprite that has been deleted with DELSPRITE sprite-
number to reappear.

Program

The following program illustrates a use of the LOCATE subprogram.

100 CALL CLEAR
110 CALL SPRITE(#1,33,7,1,1,25,25)
120 YLOC=INT(RND* 150+1)
130 XLOC=INT(RND* 200+1)
140 FOR DELAY=1 TO 300 :: NEXT DELAY
150 CALL LOCATE(#1,YLOC,XLOC)
160 GOTO 120
(Press CLEAR to stop the program.)

Line 110 creates a sprite as a fairly quickly moving red exclamation point.

Line 140 locates the sprite at a location randomly chosen in lines 120
and 130.

Line 150 repeats the process.

Also see the third example of the SPRITE subprogram.

114

MYARC ADVANCED BASIC

LOG --Function--Natural Logarithm LOG

Format
LOG(numeric-expression)

Type
REAL

Cross Reference
EXP

Description
The LOG function returns the natural logarithm of the value of the
numeric-expression. LOG is the inverse of the EXP function.

The value of the numeric-expression must be greater than

zero. Examples

100 PRINT LOG(3.4)
Prints the natural logarithm of 3.4, which is 1.223775432.

100 X=LOG(EXP(7.2))
Sets X equal to the natural logarithm of e raised to the 7.2 power, which is
7.2.

100 S=LOG(SQR(T))
Sets S equal to the natural logarithm of the square root of the value of T.

Program

The following program returns the logarithm of any positive number in any
base.

100 CALL CLEAR
110 INPUT "BASE: ":8
120 IF B =1 THEN 110
130 INPUT "NUMBER: ":N
140 IF N =0 THEN 130
150 LG=LOG(N)/LOG(B)
160 PRINT "LOG BASE";B;"OF";N;"IS";LG
170 PRINT
180 GOTO 110
(Press CLEAR to stop the program.)

115

MYARC Advanced BASIC

LPR LPR

Format
CALL LPR(x,y)

Cross Reference
POINT, DRAW, DRAWTO, LINE, PSET or preset or the current position of the
mouse cursor.

Description
Last Point Referenced returns the coordinates of the last point referenced by
the graphics commands.

LPT LPT

Syntax
LPT=device name string

Cross Reference
DOS Manual, DEFAULTS, LCOPY, LTRACE, LLIST

Description
You can use LPT either as a program statement or a command.

LPT is used to modify the name of the default print

device. Example

LPT="PIO"
LPT="RS232.BA=9600,DA=8"

The default print device is accessed from BASIC in the command mode or
within a program by use of the following commands: LCOPY, LTRACE, LLIST.

116

MYARC ADVANCED BASIC

LTRACE LTRACE

Cross Reference
TRACE, BREAK

Description
LTRACE is used exactly as TRACE except the output is directed towards the
default print device rather than the screen.

LTRACE is a valuable aid because it is not affected by screen clearing
commands such as:

CALL CLEAR, CLS, DISPLAY, ERASE ALL, CALL GRAPHICS() etc.

117

MYARC Advanced BASIC

MAGNIFY --Subprogram MAGNIFY

Format
CALL MAGNIFY(numeric-expression)

Cross Reference
CHAR, SPRITE

Description
The MAGNIFY subprogram enables you to specify whether all sprites are single-
or double-sized and whether they are unmagnified or magnified.

The value of the numeric-expression specifies the size and magnification
"level" of all sprites. (You cannot specify the level of an individual
sprite.)

LEVEL CHARACTERISTICS

1 Single-sized, unmagnified
2 Single-sized, magnified
3 Double-sized, unmagnified
4 Double-sized, magnified

The screen position of the pixel in the upper-left corner of a sprite is
considered to be the position of that sprite. That pixel remains in the
same screen position regardless of changes to the magnification level.

When you enter MYARC Advanced BASIC, sprites are single-sized and unmagnified
(level 1). When your program ends (either normally or because of an error),
stops at a breakpoint, or changes graphics mode, the sprite magnification level
is restored to I.

Single-Sized Sprites

A single-sized sprite is defined only by the character you specify when the
sprite is created.

Double-Sized Sprites

A double-sized sprite is defined by four consecutive characters, including
the character that you specify when the sprite is created.

If the number of the character you specify is a multiple of 4, that character
is the first of the four characters that comprise the sprite's definition. If
the character number is not a multiple of 4, the next lower character that is
a multiple of four is the first character of the sprite.

The first of the four characters defines the upper-left quarter of the sprite,
the second character defines the lower-left quarter of the sprite, the third
defines the upper-right quarter of the sprite, and the last of the four
characters defines the lower-right quarter of the sprite.

118

MYARC ADVANCED BASIC

Unmagnified Sprites

An unmagnified sprite occupies only the number of characters on the screen
specified by the characters that define it.

A single-sized unmagnified sprite occupies 1 character position on the
screen; a double-sized unmagnified sprite occupies 4 character positions.

Magnified Sprites

A magnified sprite expands to twice the height and twice the width of an
unmagnified sprite. The expansion occurs down and to the right; the pixel in
the upper-left corner of the sprite remains in the same screen position.

A magnified sprite has 4 times the area of an unmagnified sprite. When you
magnify a sprite, each pixel of the unmagnified sprite expands to 4 pixels
of the magnified sprite.

A single-sized magnified sprite occupies 4 character positions on the
screen; a double-sized magnified sprite occupies 16 character positions.

Program

The following program illustrates a use of the MAGNIFY subprogram.

A little figure (single-sized, unmagnified) appears near the center of the
screen. In a moment, it becomes twice as big (single-sized, magnified),
covering four character positions. In another moment, it is replaced by the
upper-left corner of a larger figure (single-sized, magnified), still
covering four character positions. Then the full figure appears (double-
sized, magnified), covering sixteen character positions. Finally it is
reduced in size to four character positions (double-sized, unmagnified).

100 CALL CLEAR
110 CALL CHAR(148,"1898FF3D3C3CE404")
120 CALL SPRITE(#1,148,5,92,124)
130 GOSUB 230
140 CALL MAGNIFY(2)
150 GOSUB 230
160 CALL CHAR(148,"0103C3417F3F07070707077E7C40000080C0C080
FCFEE2E3E0E0E06060606070")
170 GOSUB 230
180 CALL MAGNIFY(4)
190 GOSUB 230
200 CALL MAGNIFY(3)
210 GOSUB 230
220 STOP
230 REM DELAY
240 FOR DELAY=1 TO 500
250 NEXT DELAY
260 RETURN

119

MYARC Advanced BASIC

Line 110 defines character 148.

Line 120 sets up sprite using character 148. By default the magnification
factor is 1.

Line 140 changes the magnification factor to 2.

Line 160 redefines character 148. Because the definition is 64 characters
long, it also defines characters 149, 150, and 151.

Line 180 changes the magnification factor to 4.

Line 200 changes the magnification factor to 3.

120

MYARC ADVANCED BASIC

MARGIN --Subprogram MARGIN

CALL MARGINS(left,right,top,bottom)

Cross Reference
ACCEPT,CLEAR,DISPLAY,DISPLAY USING,GRAPHICS,INPUT,LINPUT,PRINT,PRINT
USING

Description
The MARGINS subprogram enables you to define screen margins. The margins
you specify define a screen window that affects the operation of several
instructions.

Left, right, top, and bottom are numeric-expressions whose values
specify the margins.

The margins cannot "overlap"; that is, the position of the top margin
must be higher on the screen than the bottom margin, and the position of
the left margin must be farther left on the screen than the right margin.

When creating a screen window, you must leave the window large enough to
allow entry of a command.

The valid range for margin location varies according to the graphics
mode. Acceptable values for the margins in each mode are found in Appendix
K.

The upper-left corner of the window defined by the margins is considered
to be the intersection of row 1 and column 1 by the ACCEPT, DISPLAY,
DISPLAY USING instructions that use the AT option.

The lower-left corner of the window is considered to be the beginning of
the input line by the ACCEPT, INPUT, and LINPUT instructions.

The lower-left corner of the window is considered to be the beginning of
the print line by the DISPLAY, DISPLAY USING, PRINT, and PRINT USING
instructions.

When the ACCEPT, INPUT, LINPUT, or PRINT USING instructions cause
scrolling, scrolling occurs only in the window.

The CLEAR, GCHAR, HCHAR, VCHAR subprograms are not affected by the margins
setting.

In all modes, the margins can extend to the edges of the screen.

MYARC Advanced BASIC

When you enter MYARC Advanced BASIC, the left margin is set to 1 and
the right margin to 80. The top and bottom margins are set to 1 and 24
respectively. Changing Modes resets margins to the default for that
mode.

Examples

100 CALL MARGINS(3,30,1,24)
Sets all four margins to the default value in Pattern Mode.

100 CALL MARGINS(1,40,1,24)
Sets the left, right, top and bottom margins to the extreme edges of
the screen in the 40 column Text Mode (Graphics(2,1)). This is the
default mode.

122

MYARC ADVANCED BASIC

MAX --Function--Maximum MAX

Format
MAX(numeric-expression1,numeric-expression2)

Type
Numeric (REAL or DEFINT)

Cross Reference
MIN

Description
The MAX function returns the larger value of two numeric-expressions.

MAX is the opposite of the MIN function.

If the values of the numeric-expressions are equal, MAX returns that value.

Examples

100 PRINT MAX(3,8)
Prints 8.

100 F=MAX(3E12,1800000)
Sets F equal to 3E12.

100 G=MAX(-12,-4)
Sets G equal to -4.

100 A=7::6=-5
110 L=MAX(A,B)
Sets L equal to 7 when A=7 and B=-5.

123

MYARC Advanced BASIC

MEMSET MEMSET

Format
CALL MEMSET(array-variable(),expression)

Cross Reference
DIM, SWAP

Description
The MEMSET statement will set all elements of the designated numeric or
string array to the value of the expression.

Example

100 DIM A$(2,2),C(400)
110 CALL MEMSET(A$0,"8")
120 PRINT A$(2,1)
130 CALL MEMSET(C(),234)
140 PRINT C(0);C(400)
RUN
B
234 234

124

MYARC ADVANCED BASIC

MERGE MERGE

Format
MERGE["]file-specification["]

Cross Reference
SAVE

Description
The MERGE command combines a program from an external storage device with the
program currently in memory. MERGE is frequently used to combine several
previously written program segments into one program.

The file-specification is a string constant that indicates the name of
the program on the external device. The file-specification can
optionally be enclosed in quotation marks.

The lines of the external program are inserted in line-number order among
the lines of the program in memory. If a line number in the external program
duplicates a line number in the program in memory, the new line replaces
the old line.

The MERGE command does not clear breakpoints.

A program on an external device can be merged only if it was saved with the
MERGE option of the SAVE command.

Example

MERGE DSK1.SUB
Merges the program SUB into the program currently in memory.

Program

Listed below is an example of how to merge programs. If the following
program is saved on DSK1 as BOUNCE with the merge option, it can be merged
with other programs.

100 CALL CLEAR
110 RANDOMIZE
140 DEF RN050=INT(RND* 50-25)
150 GOSUB 10000
10000 FOR AA=1 TO 100
10010 QQ=RND50
10020 LL=RND50
10030 CALL MOTION(#1,QQ,LL)
10040 NEXT AA
10050 RETURN
SAVE "DSK1.BOUNCE",MERGE
NEW

125

MYARC Advanced BASIC

Place the following program into the computer's memory.

120 CALL CHAR(96,"18183CFFFF3C1818")
130 CALL SPRITE(#1,96,7,92,128)
150 GOSUB 500
160 STOP

Now merge BOUNCE with the above program.

MERGE DSK1.BOUNCE

The program that results from merging BOUNCE with the above program is
shown here.

LIST
100 CALL CLEAR
110 RANDOMIZE
120 CALL CHAR(96,"18183CFFFF3C1818")
130 CALL SPRITE(#1,96,7,92,128)
140 DEF RND50=INT(RND* 50-25)
150 GOSUB 10000
160 STOP
10000 FOR AA=1 TO 100
10010 QQ=RND50
10020 LL=RND50
10030 CALL MOTION(#1,QQ,LL)
10040 NEXT AA
10050 RETURN

Note that line 150 is from the program that was merged (BOUNCE), not from
the program that was in memory.

126

MYARC ADVANCED BASIC

MIN --Function--Minimum MIN

Format
MIN(numeric-expressionl,numeric-expression2)

Type
Numeric

Cross Reference
MAX

Description
The MIN function returns the smaller value of two numeric-expressions. MIN
is the opposite of the MAX function.

If the values of the numeric-expressions are equal, MIN returns that
value.

Examples

100 PRINT MIN(3,8)
Prints 3.

100 F=MIN(3E12,1800000)
Sets F equal to 1800000.

100 G=MIN(-12,-4)
Sets G equal to -12.

100 A=7::8=-5
110 L=MIN(A,B)
Sets L equal to -5 when A=7 and8=-5.

127

MYARC Advanced BASIC

MOD --Function MOD

Format
MOD(numvarl,numvar2)

Description
MOD computes the arithmetic remainder (MODulo) from the expression
numvarl,numvar2. The remainder is then rounded up or down to the nearest
integer.

Example

10 FOR I=1 TO 1000
20 R = MOD(I,20)
30 PRINT I,R
40 NEXT I RUN

The above program prints to the screen the modulo base 20 of all integers
between 1 and 1000.

128

MYARC ADVANCED BASIC

MOTION --Subprogram MOTION

Format
CALL MOTION(#sprite-number,vertical-velocity,horizonal-velocity[,...])

Cross Reference
SPRITE

Description
The MOTION subprogram enables you to change the velocity of one or more
sprites.

The sprite-number is a numeric-expression whose value specifies the
number of a sprite as assigned by the SPRITE subprogram.

The vertical- and horizonal-velocity are numeric-expressions whose
values range from -128 to 127. If both values are zero, the sprite
is stationary. The speed of a sprite is in direct linear
proportion to the absolute value of the specified velocity.

A positive vertical-velocity causes the sprite to move toward the
bottom of the screen; a negative vertical-velocity causes the sprite
to move toward the top of the screen.

A positive-horizontal-velocity causes the sprite to move to the
right; a negative horizontal-velocity causes the sprite to move to
the left.

If neither the vertical- nor horizontal-velocity are zero, the
sprite moves at an angle in a direction and at a speed determined
by the velocity values.

When a moving sprite reaches an edge of the screen, it disappears. The
sprite reappears in the corresponding position at the opposite edge of
the screen.

Program

The following program illustrates a use of the MOTION subprogram.

100 CALL CLEAR
110 CALL SPRITE(#1,33,5,92,124)
120 FOR XVEL=-16 TO 16 STEP 2
130 FOR YVEL=-16 TO 16 STEP2
140 DISPLAY AT(12,11):XVEL;YVEL
150 CALL MOTION(#1,YVEL,XVEL)
160 NEXT YVEL
170 NEXT XVEL
Line 110 creates a sprite.
Line 120 and 130 set values for the motion of the sprite.
Line 150 sets the sprite in motion.

Lines 160 and 170 complete the loops that set the values for the
motion of the sprite.

129

MYARC Advanced BASIC

MOUSE --Commands MOUSE

The MYARC 9640 supports the industry standard MS mouse interface.
Software within the operating system is used to position the mouse on
the screen and detect mouse key depressions. The mouse itself is
implemented as sprite #0 and therefore sprite #0 should not be used
elsewhere in the program when using the mouse. In order to easily
interface to these low level routines, MYARC Advanced BASIC implements
a standard set of mouse commands. An example program is given in
Appendix L illustrating the use of these commands.

MOUSE ON

 Turns on mouse interrupt. Mouse buttons are checked at the start
of each BASIC statement.

 If a mouse button is pressed, program execution is branched to an
"ON MOUSE" subroutine or subprogram if the particular mouse key pressed
was "armed".

MOUSE OFF

 Turns off mouse interrupt checking.

MOUSE STOP

 Delays action of the mouse button until MOUSE ON statement is
encountered. The MOUSE ON interrupts is put on hold until a MOUSE ON
command is later executed. Branching then takes place immediately if a
mouse button was depressed.

ON MOUSE(buttonnum) GOSUB (linenum)

 The program line number of a sub routine is executed when its
corresponding button is pressed. Mouse button #1 is the left button.

CALL MKEY(button1status,button2status,button3status,pxlrow,pxlcol)

 The variables you use for button#status return the following:

 -1 button was pressed only once.
 0 button is not being or has not been pressed
 1 button was pressed once since last call

 The variables you use for pxlrow and pxlcol return the mouse's
position.

CALL MLOC(pxlrow,pxlcol)

 Returns the location of the row and column when a mouse button was
last pressed.

Additionally, the mouse is always sprite pattern 252. It is also always
sprite #0. The mouse shape can be defined by using CALL
SCHAR(252,patternstring). The mouse default color is 16. It can be
changed using CALL COLOR(#0,color). You can alternatively change the
mouse color by redefining color 16 with the CALL PALETTE command.

130

MYARC ADVANCED BASIC

CALL MREL(pxlrow,pxlcol)

Returns information of row and column when mouse button was released.

CALL MOUSEDRAG(ON,linecolor)

Draws a solid line as you move the mouse. The linecolor is 1-16 or 1-256
or 1-4 depending on the mode used. The left button controls the drag.
MODE(3,2) will usually require a redefined PALETTE for effective use.

CALL MOUSEDRAG(OFF)

Reverse mouse drag ON command.

CALL HIDEMOUSE

Eliminates mouse cursor.

CALL SEEMOUSE(pxlrow,pxlcol,speed [,color])

Displays mouse cursor at pxlrow, pxlcol. Speed range 1-8. Color option
(1-16) is available if using sprite mode 2. See Appendix K.

NOTE: The MOUSEDRAG ON command and ON MOUSE(1) GOSUB CAN NOT be used
together. Once the ON MOUSE has been used it stays active even if you
issue a new gosub to a different line number. There is no mouse off(button
#) command, but a patch to the KEY STOP allows you to remove all gosubs.
This also removes all ON KEY GOSUBS and requires you to turn them on if
they are to be used.

Example

100 CALL GRAPHICS(3,3) Can be 1,1 1,2 1,3 2,2
2,3 3,2 3,3
110 CALL SCHAR(252,"E0C0A01")
120 MOUSE ON
130 ON MOUSE(1) GOSUB 220 Activate gosub routines
140 ON MOUSE(2) GOSUB 240
150 ON MOUSE(3) GOSUB 250
160 CALL SEEMOUSE(100,100,3,4)
170 CALL MKEY(BUT1,BUT2,BUT3,ROW,COL)
180 DISPLAY AT(15,1):BUT1;BUT2;BUT3;ROW;COL
190 IF ROW>150 THEN 210 End program if row greater
than 150
200 GOTO 170
210 CALL HIDEMOUSE::MOUSE OFF::END
220 CALL MLOC(ROW1,COL1)::CALL MREL(ROW2,COL2)
230 DISPLAY AT(17,1):TIME$;ROW1;COL1;ROW2;COL2::RETURN
240 DISPLAYAT(19,1):DATE$;"MOUSE KEY 2"::RETURN
250 KEY STOP
260 ON MOUSE(2) GOSUB 220
270 ON MOUSE(3) GOUSB 210
280 CALL MOUSEDRAG(ON,4)
290 RETURN

MOUSE(1) REPORTS MLOC and MREL info
MOUSE(2) reports date

First time MOUSE(3) eliminates MOUSE(1), redefines MOUSE(2) to report
MLOC and MREL and turns on button #1 to activate drawing on the screen.
Second press ends program.

 131

MYARC Advanced BASIC

MYART--Subprogram MYART

Format
MYART(path.filename)

Description
CALL MYART(path.filename) loads and displays a MYART picture.

Graphics mode must match before it is called.

Example program to detect graphics mode

100 CALL RESETPLT
110 CALL GRAPHICS(4)
120 CLS
130 DISPLAY AT(20,10):"MYART path.filename"
140 ACCEPT AT(21,16)BEEP:MY$
150 OPEN #1:MY$,INPUT,DISPLAY,FIXED 128
160 INPUT #1:A$
170 CLOSE #1
180 IF SEG$(A$,2,1)=CHR$(0) THEN 200
190 CALL GRAPHICS(3,3) :: GOTO 210
200 CALL GRAPHICS(2,3)
210 CALL MYART(MY$)
220 CALL KEY(0,K,S) :: IF S<1 THEN 220
230 CALL RESETPLT
240 CALL GRAPHICS(4)

NEW NEW

Format
NEW

Description
The NEW command erases the program currently in memory, so that you can
enter a new program.

The NEW command restores the computer to the condition it was in when
you selected MYARC Advanced BASIC from the main selection list with the
following exceptions:

 The INIT subprogram does not effect the memory available for MYARC
Advanced BASIC programs.

Assembly-language subprograms loaded by the LOAD subprogram remain
in memory, but is a separate memory and does not reduce the
memory available for MYARC Advanced BASIC programs.

NEW restores all other default values, closes any open files, and
cancels any BREAK command in effect.

132

MYARC ADVANCED BASIC

NEXT NEXT

Format
NEXT control-variable

Cross Reference
FOR TO

Description
The NEXT instruction marks the end of a FOR-NEXT loop.

You can use NEXT as either a program statement or a command.

The control-variable is the same control-variable that appears in the
corresponding FOR TO instruction.

The NEXT instruction is always paired with a FOR TO instruction to form a
FOR-NEXT loop (see FOR TO).

A NEXT statement cannot be part of an IF THEN statement.

If NEXT is used as a command, it must be part of a multiple-statement
line. A FOR TO instruction must precede it on the same line.

Program

The following program illustrates a use of the NEXT statement in lines 130
and 140.

100 TOTAL=O
110 FOR COUNT=10 TO 0 STEP -2
120 TOTAL=TOTAL+COUNT
130 NEXT COUNT
140 FOR DELAY=1 TO 100::NEXT DELAY
150 PRINT TOTAL,COUNT;DELAY
RUN
30 -2 101

133

MYARC Advanced BASIC

NUMBER NUMBER

Format
NUMBER [initial-line-number][,increment]
NUM

Description

The NUMBER command puts the computer in Number Mode, so that it automatically
generates line numbers for your program.

If you enter an initial-line-number, the first line number displayed
is the one you specify. If you do not specify an initial-line-number,
the computer starts with line number 100.

Succeeding line numbers are generated by adding the value of the
numeric- expression increment to the previous line number. To specify
increment only (without specifying an initial-line-number), you must
precede the increment with a comma. The default increment is 10.

If a line number generated by the NUMBER command is the number of a line
already in the program in memory, the existing program line is displayed
with the line number. To indicate that the displayed line is an existing
program line, the prompt symbol (>) that normally appears to the left of
the line number is not displayed. When the computer displays an existing
program line, you can either edit the line or press ENTER to leave the line
unchanged.

If you enter a program line that contains an error, the appropriate error
message is displayed, and the same line number appears again, enabling you
to retype the line correctly.

If the next line number to be generated is greater than 32767, the computer
leaves Number Mode.

To leave Number Mode, press ESC. If the computer is displaying only a line
number (that is, a line number not followed by any characters), you can
leave Number Mode by pressing ENTER, UP ARROW, DOWN ARROW.

Special Editing Keys in Number Mode

In Number Mode, you can use the editing keys whether you are changing
existing program lines or entering new ones.

LEFT ARROW --Pressing LEFT ARROW moves the cursor one character position to
the left. When the cursor moves over a character, it does not change or
delete it.

134

MYARC ADVANCED BASIC

RIGHT ARROW --Pressing RIGHT ARROW moves the cursor one character position to
the right. When the cursor moves over a character, it does not change or
delete it.

INS --Pressing INS enables you to insert characters at the cursor position.
ZEiracters that you type are inserted until you press one of the other
special editing keys. The character at the cursor position and all
characters to the right of the cursor move to the right as you type. You
may lose characters if they move so far to the right that they are no longer
in the program line.

DEL --Pressing DEL deletes the character in the cursor position. All
CFEracters to the right of the cursor move to the left.

ERASE (Ctrl C) --Pressing ERASE erases the program line currently displayed
1incuding the line number). The program line is erased only from the
screen, not from memory.

REDO (Alt + F8) --Pressing REDO causes the program line or other text most
recently input to be disp-537-6d. This line can be especially helpful if you
make an error while editing a program line, causing the computer not to
accept it. Pressing REDO displays the original line so that you can make
corrections without haviT1T—fo retype the entire line. When you press REDO,
the computer leaves Number Mode and enters Edit Mode.

ESC (Ctrl +Break) --Pressing ESC causes the computer to leave Number Mode.
17--you were entering a new program line, it is not accepted. If you were
changing an existing program line, any changes that you made are ignored.

ENTER --If you press ENTER when the computer is displaying only a line number
(that is, a line number not followed by any characters), the computer leaves
Number Mode. If the line number is the number of an existing program line,
that program line is not changed or deleted.

If you press ENTER when the computer is displaying a line number followed by a
program line, that line is accepted and the next line number is generated. The
displayed line may be a new line that you have entered, an existing program
line that you have not changed, or an existing program line that you have
edited.

UP ARROW --UP ARROW works exactly the same as ENTER in Number Mode.

DOWN ARROW --DOWN ARROW works exactly the same as ENTER in Number Mode.

135

MYARC Advanced BASIC

Example

In the following, what you type is UNDERLINED. Press ENTER after each line.
NUM instructs the computer to number starting at 100 with increments of 10.

NUM
100 X=4
110 271-0
120
NUM 110
110 Z=11
120 PRINT (Y+X)/Z
130
NUM 105,5
105 Y=7
110 77T1
115
LIST
100 X=4
105 Y=7
110 Z=11
120 PRINT (X+Y)/Z

NUM 110 instructs the computer to number starting at 110 with increments
of 10. Change line 110 to Z=11.

NUM 105,5 instructs the computer to number starting at line 105 with
increments of 5. Line 110 already exists.

136

MYARC ADVANCED BASIC

OLD OLD

Format
OLD ["]file-specification["]

Cross Reference
SAVE

Description
The OLD command loads a program from an external storage device into memory.

The file-specification indicates the name of the program to be loaded
from the external device. The file-specification, a string constant,
can optionally be enclosed in quotation marks.

The program to be loaded can be one of the following:

A saved MYARC Advanced BASIC program.

A file in DISPLAY VARIABLE 80 format, created by the LIST command or

a text editing or word processing program.

A specially prepared assembly-language program that executes
automatically when it is loaded.

Before the program is loaded, all open files are closed. The program
currently in memory is erased after the program begins to load. For more
information see "Loading an Existing Program".

Protected and Unprotected Programs

To execute an unprotected MYARC Advanced BASIC program that has been loaded
into memory, enter the RUN command when the cursor appears. You can use the
LIST command to display the program or any portion of the program.

If the program was saved using the PROTECTED option of the SAVE command, it
starts executing automatically when it is loaded. When the program ends
(either normally or because of an error) or stops at a breakpoint, it is
erased from memory.

Examples
OLD CSI
Displays instructions and then loads into the computer's memory a program
from a cassette recorder.

OLD "DSK1.MYPROG"
Loads into the computer's memory the program MYPROG from diskette in disk
drive one.

OLD DSK.DISK3.UPDATE85
Loads into the computer's memory the program UPDATE85 from the diskette named
DISK3.

137

MYARC Advanced BASIC

ON BREAK ON BREAK

Format
ON BREAK STOP
ON BREAK NEXT

Cross Reference
BREAK

Description
The ON BREAK statement enables you to specify the action you want the
computer to take when either a breakpoint is encountered or CLEAR is pressed.

If you enter the STOP option, or if your program does not include an
ON BREAK statement, program execution stops when a breakpoint is
encountered or CLEAR is pressed.

If you enter the NEXT option, program execution continues normally (with
the next program statement) when a breakpoint is encountered or CLEAR is
pressed. If you press CLEAR while the computer is performing an input or
an output operation with certain external devices, an error condition
occurs, causing the program to halt. When the NEXT option is in effect,
pressing CTL-ALT-DEL is the only way to interrupt your program. However,
by doing so, you perform a "reboot" of the system therefore erasing the
program in memory and causing you to exit from MYARC Advanced BASIC
without closing any open files, possibly causing the loss of data in
those files.

ON BREAK does not affect a breakpoint that occurs when a BREAK statement
with no line-number-list is encountered in a program.

Program

The following program illustrates the use of ON BREAK.

100 CALL CLEAR
110 BREAK 150
120 ON BREAK NEXT
130 BREAK
140 FOR A=1 TO 50
150 PRINT "CLEAR IS DISABLED."
160 NEXT A
170 ON BREAK STOP
180 FOR A=1 TO 50
190 PRINT "NOW IT WORKS."
200 NEXT A

Line 110 sets a breakpoint at line 150.

Line 120 sets breakpoint handling to go to the next line.

138

MYARC ADVANCED BASIC

A breakpoint occurs at line 130 despite line 120, because no line number
has been specified after BREAK. Enter CONTINUE.

No breakpoint occurs at line 150 because of line 120; CLEAR has no effect
during the execution of lines 140 through 160 because of line 120. Line
170 restores the normal use of CLEAR.

139

MYARC Advanced BASIC

ON ERROR ON ERROR

Format
ON ERROR STOP
ON ERROR line-number

Cross Reference
ERR, GOSUB, RETURN

Description

The ON ERROR statement enables you to specify the action you want the
computer to take if a program error occurs.

If you enter the STOP option, or if your program does not include an ON
ERROR statement, program execution stops when a program error occurs.

If you enter a line-number, a program error causes program control to
be transferred to the subroutine that begins at the specified line-
number. A RETURN statement in the subroutine returns control to a
specified program statement.

When an error transfers control to a subroutine, the line-number option is
cancelled. If you wish to restore it, your program must execute an ON ERROR
line-number statement again.

The ON ERROR line-number statement does not transfer control when the error
is caused by a RUN statement.

Program

The following program illustrates a use of ON ERROR.

100 CALL CLEAR
110 DATA "A","4","B","C"
120 ON ERROR 190
130 FOR G=1 TO 4
140 READ X$
150 X=VAL(X$)
160 PRINT X;"SQUARED IS";X*X
170 NEXT G
180 STOP
190 REM ERROR SUBROUTINE
200 ON ERROR 230
210 X$="5"
220 RETURN
230 REM SECOND ERROR
240 CALL ERR(CODE,TYPE,SEVER,LINE)
250 PRINT "ERROR";CODE;" IN LINE";LINE
260 RETURN 170

Line 120 causes any error to pass control to line 190.

•

140

MYARC ADVANCED BASIC

Line 130 begins a loop. An error occurs in line 150 and control passes to
line 190.

Line 200 causes the next error to pass control to line 230.

Line 210 changes the value of X$ to an acceptable value. Line 220 returns
control to the line in which the error occurred (line 150).

The second time an error occurs, the SECOND ERROR subroutine is called
because of line 200. Line 240 obtains specific information about the error
by using CALL ERR. Line 250 reports the nature of the error, and line 260
returns control to line 170 of the main program, which begins the next
iteration of the loop.

When the third error occurs, the message Bad Argument in 150 is displayed
because the program does not specify what action to take if another error
occurs. Program execution ceases.

141

MYARC Advanced BASIC

ON GOSUB ON GOSUB

Format
ON numeric-expression;GOSUB; line-number-list
GOSUB

Cross Reference
GOSUB, RETURN

Description
The ON GOSUB statement enables you to transfer conditional program control to
one of several subroutines.

The value of the numeric-expression determines to which of the line
numbers in the line-number-list program control is transferred.

If the value of the numeric-expression is 1, program control is
transferred to the subroutine that begins at the program statement
specified by the first line number in the line-number-list; if the
value of the numeric-expression is 2, program control is transferred
to the subroutine that begins at the program statement specified by
the second line number in the line-number-list; and so on.

If necessary, the value of the numeric-expression is rounded to the
nearest integer. The value of the numeric-expression must be greater
than or equal to 1 and less than or equal to the number of line numbers
in the line-number-list.

The line-number-list consists of one or more line numbers separated by
commas. Each line number specifies a program statement at which a
subroutine begins.

Use a RETURN statement to return program control to the statement
immediately following the ON GOSUB statement that called the subroutine.

To avoid unexpected results, it is recommended that you exercise special
care if you use ON GOSUB to transfer control to or from a subprogram or
into a FOR-NEXT loop.

Examples

100 ON X GOSUB 1000,2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if X is 3.

100 ON P-4 GOSUB 200,250,300,800,170
Transfers control to 200 if P-4 is 1 (P is 5), 250 if P-4 is 2, 300 if P-4 is
3, 800 if P-4 is 4, and 170 if P-4 is 5.

142

MYARC ADVANCED BASIC

Program

The following program illustrates a use of ON GOSUB.

100 CALL CLEAR
110 DISPLAY AT(11,1):"CHOOSE ONE OF THE FOLLOWING:"
120 DISPLAY AT(13,1):"1 ADD TWO NUMBERS."
130 DISPLAY AT(14,1):"2 MULTIPLY TWO NUMBERS."
140 DISPLAY AT(15,1):"3 SUBTRACT TWO NUMBERS."
150 DISPLAY AT(16,1):"4 EXIT PROGRAM."
160 DISPLAY AT(20,1):"YOUR CHOICE:"
170 DISPLAY AT(22,2):"FIRST NUMBER."
180 DISPLAY AT(23,1):"SECOND NUMBER."
190 CALL MARGIN(3,30,1,24)
200 ACCEPT AT(20,14)VALIDATE(DIGIT):CHOICE
210 IF CHOICE<1 OR CHOICE>4 THEN 200
220 IF CHOICE=4 THEN STOP
230 ACCEPT AT(22,16)VALIDATE(NUMERIC):FIRST
240 ACCEPT AT(23,16)VALIDATE(NUMERIC):SECOND
250 CALL MARGIN(3,30,1,8)
260 ON CHOICE GOSUB 280,300,320
270 GOTO 190
280 DISPLAY AT(3,1)ERASE ALL:FIRST;"PLUS";SECOND;"EQUALS";FIRST+SECOND
290 RETURN
300 DISPLAY AT(3,1)ERASE ALL:FIRST;"TIMES";SECOND;"EQUALS";FIRST*SECOND
310 RETURN
320 DISPLAY AT(3,1)ERASE ALL:FIRST;"MINUS";SECOND;"EQUALS";FIRST-SECOND
330 RETURN

Line 260 determines where to go according to the value of CHOICE.

143

MYARC Advanced BASIC

ON GOTO ON GOTO

Format
ON numeric-expression GOTO line-number-list

GOTO

Cross Reference
GOTO

Description
The ON GOTO statement enables you to transfer unconditional program control
to one of several program statements.

The value of the numeric-expression determines to which of the line numbers
in the line-number-list program control is transferred. If the value of
the numeric-expression is 1, program control is transferred to the program
statement specified by the first line number in the line-number-list; if
the value of the numeric-expression is 2, program control is transferred
to the program statement specified by the second line number in the line-
number-list; and so on.

If necessary, the value of the numeric-expression is rounded to the
nearest integer. The value of the numeric-expression must be greater
than or equal to 1 and less than or equal to the number of line numbers
in the line-number-list.

The line-number-list consists of one or more line numbers separated by
commas. Each line number specifies a program statement.

To avoid unexpected results, it is recommended that you exercise care if you use
ON GOTO to transfer control to or from a subroutine or a subprogram or into a
FOR-NEXT loop.

Examples

100 ON X GOTO 1000,2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300 if X is 3. The
equivalent statement using an IF-THEN-ELSE statement is IF X=1 THEN 1000 ELSE
IF X=2 THEN 2000 ELSE IF X=3 THEN 300 ELSE PRINT "ERROR!"::STOP.

100 ON P-4 GOTO 200,250,300,800,170
Transfers control to 200 if P-4 is 1 (P is 5), 250 if P-4 is 2, 300 if P-4 is
3, 800 if P-4 is 4, and 170 is P-4 is 5.

144

MYARC ADVANCED BASIC

Program

The following program illustrates a use of ON GOTO. Line 260 determines
where to go according to the value of CHOICE.

100 CALL CLEAR
110 DISPLAY AT(11,1):"CHOOSE ONE OF THE FOLLOWING:"
120 DISPLAY AT(13,1):"1 ADD TWO NUMBERS."
130 DISPLAY AT(14,1):"2 MULTIPLY TWO NUMBERS."
140 DISPLAY AT(15,1):"3 SUBTRACT TWO NUMBERS."
150 DISPLAY AT(16,1):"4 EXIT PROGRAM."
160 DISPLAY AT(20,1):"YOUR CHOICE:"
170 DISPLAY AT(22,2):"FIRST NUMBER:"
180 DISPLAY AT(23,1):"SECOND NUMBER:"
190 CALL MARGIN(3,30,1,24)
200 ACCEPT AT(20,14)VALIDATE(DIGIT):CHOICE
210 IF CHOICE<1 OR CHOICE>4 THEN 200
220 IF CHOICE=4 THEN STOP
230 ACCEPT AT(22,16)VALIDATE(NUMERIC):FIRST
240 ACCEPT AT(23,16)VALIDATE(NUMERIC):SECOND
250 CALL MARGIN(3,30,1,8)
260 ON CHOICE GOTO 270,290,310
270 DISPLAY AT(3,1)ERASE ALL:FIRST;"PLUS";SECOND;"EQUALS";FIRST+SECOND
280 GOTO 190
290 DISPLAY AT(3,1)ERASE ALL:FIRST;HTIMES";SECOND:"EQUALS";FIRST*SECOND
300 GOTO 190
310 DISPLAY AT(3,1)ERASE ALL:FIRST;"MINUS";SECOND;"EQUALS";FIRST-SECOND
320 GOTO 190

145

MYARC Advanced BASIC

ON WARNING ON WARNING

Format
ON WARNING PRINT

STOP
NEXT

Description

The ON WARNING statement enables you to specify the action you want the
computer to take if a warning condition occurs during the execution of your
program.

A warning, a condition caused by invalid input or output, does not normally
cause program execution to be terminated.

If you enter the PRINT option, or if your program does not include an
ON WARNING statement, the computer displays a warning message when a
warning condition occurs during program execution.

If you enter the STOP option, program execution stops when a warning
condition occurs during program execution.

If you enter the NEXT option, program execution continues normally when
a warning condition occurs and no warning message is displayed. Normally,
execution continues beginning with the next program statement; however,
if the cause of the warning is an invalid response to an INPUT statement,
program execution continues beginning with that same INPUT statement.

You may have multiple ON WARNING statements in the same program.

Program

The following program illustrates a use of ON WARNING.

100 CALL CLEAR
110 ON WARNING NEXT
120 PRINT 120,5/0
130 ON WARNING PRINT
140 PRINT 140,5/0

146

MYARC ADVANCED BASIC

150 ON WARNING STOP
160 PRINT 160,5/0
170 PRINT 170
RUN
120 9.99999E+**
140
* WARNING
NUMERIC OVERFLOW IN 140

9.99999E+"
160
* WARNING
NUMERIC OVERFLOW IN 160

Line 110 sets warning handling to go to the next line. Line 120 therefore
prints the result without any message.

Line 130 sets warning handling to the default, printing the message and then
continuing execution. Line 140 therefore prints 140, then the warning, and
then continues.

Line 150 sets warning handling to print the warning message and then stop
execution. Line 160 therefore prints 160 and the warning message and then
stops.

147

MYARC Advanced BASIC

OPEN OPEN

Format
OPEN #file-number:file-specification[file-organization[size]]
[,file-type][,open-mode][,record-type[record-length]]

Cross Reference
CLOSE, INPUT, PRINT

Description
The OPEN instruction establishes an association between the computer and an
external device, enabling you to store, retrieve, and process data.

The file-number is a numeric-expression having a value between 1 and 255.
The file-number is assigned to the external file or device indicated by
the file-specification so that input/output processing instructions may
refer to the file by its file-number. While a file is open, its file-
number cannot be assigned to another file. However, you may have more
than one file open to a device at one time. File-number 0 always refers
to the keyboard and screen of your computer, and is always open. You
cannot open or close file-number O.

If necessary, the file-number is rounded to the nearest integer.

The file-specification is a string-expression; if you use a string
constant, you must enclose it in quotation marks.

Options

The following options may be entered in any order.

The file-organization specifies whether records are to be accessed
sequentially or randomly. Enter SEQUENTIAL for sequential access, or
RELATIVE for random access. Records in a sequential-access file are
read or written in sequence from beginning to end. Records in a
random-access (relative-record) file can be accessed in any order (they
can be processed randomly or sequentially.)

If you do not specify a file-organization, it is assumed to be
SEQUENTIAL.

You can optionally specify the initial size of the file. Size is a
numeric- expression, the value of which specifies the initial number of
records in the file. Note: The size option cannot be used with all
peripherals.

The file-type specifies the format of data in the file.

INTERNAL--The computer transfers data in binary format. This is
the most efficient method of sending data.

DISPLAY--The computer transfers data in ASCII format. DISPLAY

148

MYARC ADVANCED BASIC

files can only use FIXED records of 64 or 128. If no file-type is
specified in OPEN, the default is DISPLAY.

DISPLAY type files require a special kind of output record. Each
element in the PRINT field must be separated by a comma enclosed in
quotation marks. The comma serves as a field separator in the file.
The omission of this comma causes an I/O error. Note: This is not the
same as a print separator, which must be inserted between an element
in the PRINT field and the field separator.

The open-mode specifies the input/output operations that can be
performed on the file.

INPUT--The computer can only read data from the file. OUTPUT--

The computer can only write data to the file. UPDATE--The

computer can both read from and write to the file.

APPEND--The computer can only write data and only at the end of the
file; records already in the file cannot be accessed.

If you open an existing file for OUTPUT, the data items you write to
the file replace those currently in the file.

If you do not specify an open-mode, it is assumed to be an UPDATE.

The record-type specifies whether the records in the file are FIXED
(all of the same length) or VARIABLE (of various lengths).

SEQUENTIAL files can have FIXED or VARIABLE records. If you do
not specify the record-type of a SEQUENTIAL file, it is assumed
to be VARIABLE.

RELATIVE files must have FIXED records. If you do not specify the
record-type of a RELATIVE file, it is assumed to be FIXED.

You can optionally specify the length of records in the file. Record-
length is a numeric-expression, the value of which specifies the fixed
size (for FIXED records) or maximum size (for VARIABLE records) of each
record.

If you do not specify a record-length, its value is supplied by
the peripheral.

If you open a file that does not exist, a file is created with the options
you specify. If you open a file that does exist, the options you specify
must be the same as the options that you specified when you created the file,
except that a file with FIXED records can be opened as either SEQUENTIAL or
RELATIVE, regardless of the file-organization that you specified when you created
the file.

149

MYARC Advanced BASIC

For more information about the options available with a particular device,
refer to the owner's manual that comes with that device.

Examples

100 OPEN #1:"CS1",OUTPUT,FIXED
Opens a file on cassette. The file is SEQUENTIAL, with data stored in DISPLAY
format. The file is opened in OUTPUT mode with FIXED length records of 64
bytes.

300 OPEN #23:"DSK.MYDISK.X",RELATIVE 100,INTERNAL,FIXED,UPDATE
Opens a file named "X". The file is on the diskette named MYDISK in
whichever drive that diskette is located. The file is RELATIVE, with data kept
in INTERNAL format with FIXED length records of 80 bytes. The file is opened
in UPDATE mode and starts with 100 records made available for it.

100 OPEN #234:A$,INTERNAL

Where A$ equals "DSK2.ABC", assumes a file on the diskette in drive 2 with a
name of ABC. The file is SEQUENTIAL, with data kept in INTERNAL format. The
file is opened in UPDATE mode with VARIABLE length records that have a maximum
length of 80 bytes.

Program

The following program illustrates a use of the SIZE option in an OPEN statement.

100 OPEN #1:"DSK1.LARGE",RELATIVE
110 PRINT #1,REC 100:0
120 CLOSE #1
130 OPEN #1:"DSK1.LARGE",SEQUENTIAL,FIXED
200 CLOSE #1

Line 100 opens a RELATIVE file on diskette.

Line 110 writes to the 100th record, thereby reserving space for 100 contiguous

records.

Line 120 closes the file.

Line 130 reopens the file, this time with SEQUENTIAL file organization.

Line 200 closes the file.

150

MYARC ADVANCED BASIC

OPTION BASE OPTION BASE

Format
OPTION BASE 0 or 1

Cross Reference
DIM

Description
The OPTION BASE statement enables you to set the lower limit of array
subscripts.

You can use the OPTION BASE statement to specify a lower array-subscript
limit of either 0 or 1. If your program does not include an OPTION BASE
statement, the lower limit is set to 0.

The OPTION BASE statement applies to every array in your program. You
can have only one OPTION BASE statement in a program.

If you do not set the lower array-subscript limit to 1, the computer
reserves memory for element 0 of each dimension of each array. To avoid
reserving unnecessary memory, it is recommended that you set the lower
limit to 1 if your program does not use element 0.

The OPTION BASE statement must have a lower line number than any DIM
statement or any reference to an array in your program. The OPTION BASE
statement is evaluated during pre-scan and is not executed.

The OPTION BASE statement cannot be part of an IF THEN statement.

Example

100 OPTION BASE 1
Sets the lowest allowable subscript of all arrays to one.

MYARC Advanced BASIC

OUTP OUTP

Format
CALL OUTP(port,databyte)

Cross Reference
INP

You may use CALL OUTP either as a program statement or a command.

Use only ports 1 or 2 as the PIO or PIO/2 ports respectively.

Sends a databyte to a port.

 The databyte may be any integer between 0 and 255.

Data is received and sent internally through various components
within the computer, known as ports.

The OUTP statement is used to obtain direct control of a device
such as the keyboard, sound, etc.

 OUTP is the complement function to the INP command.

PALETTE --Subprogram PALETTE

Format
CALL
PALETTE(#color,redvalue,bluevalue,greenvalue[,#color2,redvalue2,blueval
ue2,greenvalue2,...])

Cross Reference
TCOLOR,RESETPLT

Description
Mixes a new color palette for one or more colors in the 16-color sets
and the 4-color set.

The range for each colorvalue is from 1 to 8.

The number-color for MODE(3,2) is limited to colors 1-4 (See Graphics).

A new command or program statement CALL RESETPLT
Resets the palette to the default values.

152

MYARC ADVANCED BASIC

PATTERN --Subprogram PATTERN

Format
CALL PATTERN(#sprite-number,character-coed[....])

Cross Reference
CHAR, MAGNIFY, SPRITE

Description
The PATTERN subprogram enables you to change the pattern on one or more
sprites.

 The sprite-number is a numeric-expression whose value specifies
the number of the sprite as assigned in the SPRITE subprogram.

 Character-code is a numeric-expression with a value from 0-255,
specifying the character number of the character you want to use as the
pattern for a sprite.

If you use the MAGNIFY subprogram to change to double-sized sprites, the
sprite definition includes the character specified by the character-code
and three additional characters (See MAGNIFY.)

Program

The following program illustrates a use of the PATTERN subprogram.

100 CALL CLEAR
110 CALL COLOR(12,16,16)
120 FOR A=19 TO 24
130 CALL HCHAR(A,1,120,32)
140 NEXT A
150 A$="0171821214141FFFF4141212119070080E09884848282FFFFF8282848498E000"
160 B$="01061820305C4681814246242C180700806018342462428181623A0C0418E000"
170 C$="0106182C2446428181465C3020180700806018040C3A6281814262243418E000"
180 CALL CHAR(244,A$,248,B$,252,C$)
190 CALL SPRITE(#1,244,5,130,1,0,8)
200 CALL MAGNIFY(3)
210 FOR A=244 TO 252 STEP 4
220 CALL PATTERN(#1,A)
230 FOR DELAY=1 TO 5 :: NEXT DELAY
240 NEXT A
250 GOTO 210
(Press CLEAR to stop program.)

Lines 110 through 140 build a floor.

Lines 150 through 180 define characters 244 through 255.

Line 190 creates a sprite in the shape of a wheel and starts it moving
to the right.

Line 200 makes the sprite double-sized.

Lines 210 through 250 make the spokes of the wheel appear to move as the
character displayed is changed.

153

MYARC Advanced BASIC

PEEK --Subprogram--Peek at CPU RAM PEEK

Format CALL PEEK(address, numeric-variable-list[,"",address, numeric-
variable-list[,...]])

Cross Reference
LOAD, PEEKV, POKEV, VALHEX

Description
The PEEK subprogram enables you to ascertain the contents of specified
CPU memory addresses.

You can use the PEEKV subprogram to ascertain the contents of VDP
memory.

The address is a numeric-expression whose value specifies the
first CPU (Central Processing Unit) memory address at which you
want to peek.

 The address must have a value from -32768 to 32767 inclusive.

You can specify an address from 0 to 32767 inclusive by specifying
the actual address.

You can specify an address from 32768 to 65535 inclusive by
subtracting 65536 from the actual address. This will result in a
value from -32768 to -1 inclusive.

If you know the hexdecimal value of the address, you can use the
VALHEX function to convert it to a decimal numeric-expression,
eliminating the need for manual calculations.

 If necessary, the address is rounded to the nearest integer.

The numeric-variable-list consists of one or more numeric-
variables separated by commas. Bytes of data starting from the
specified CPU memory address are assigned sequentially to the
numeric- variables in the numeric-variable-list.

One byte, with a value from 0 to 255 inclusive, is returned to
each specified numeric-variable.

You can specify multiple addresses and numeric-variable-lists by
entering a null string(two adjacent quotation marks) as a separator
between a numeric-variable-list and the next address.

If you call the PEEK subprogram with invalid parameter, the computer may
function erratically or cease to function entirely. If this occurs, turn off the
computer, wait several seconds, and then turn the computer back on again.

154

MYARC ADVANCED BASIC

Examples

100 CALL PEEK(8192,X1,X2,X3,X4)
Returns the values in memory locations 8192, 8193, 8194, and 8195 in the
variables Xl, X2, X3, and X4, respectively.

100 CALL PEEK(22433,A,B,C,"",-4276,X,Y,Z)
Returns the values in locations 22433, 22434, and 22435 in A, B, C,
respectively; and the values in locations 61260, 61261, and 61263 in X, Y,
and Z, respectively.

100 CALL PEEK(VALHEX("4F55"),V1,V2,V3)
Uses VALHEX to ascertain the decimal equivalent of the hexidecimal number
4F55, which is 20309. Then the values in locations 20309, 20310, and 20311
are returned in V1, V2, and V3, respectively.

Program

The following program returns in A the number of the highest numbered
sprite (#15) currently in use. A zero is returned to B, because no sprites
are defined after the DELSPRITE statement.

100 CALL CLEAR
110 CALL SPRITE(#15,33,7,100,100,0,0)
120 CALL PEEK(VALHEX("837A"),A)
130 CALL DELSPRITE(ALL)
140 CALL PEEK(VALHEX("837A"),B)
150 PRINT A,B

155

MYARC Advanced BASIC

PEEKV --Subprogram--Peek at VDP RAM PEEKV

Format
CALL PEEKV(address,numeric-variable-list[,"",address,
numeric-variable-list[,...])

Cross Reference
LOAD, PEEK, POKEY, VALHEX

Description
The PEEKV subprogram enables you to ascertain the contents of specified VDP
memory addresses. You can use the PEEK subprogram to ascertain the contents
of CPU memory.

The address is a numeric-expression whose value specifies the first VDP
(Video Display Processor) memory address at which you want to peek.

The address must have a value from 0 to 16383 inclusive.

If you know the hexadecimal value of the address (0000-3FFF), you can use
the VALHEX function to convert it to a decimal numeric-expression.

If necessary, the address is rounded to the nearest integer.

The numeric-variable-list consists of one or more numeric-variables
separated by commas. Bytes of data starting from the specified VDP
memory address are assigned sequentially to the numeric-variables in
the numeric-variable-list.

One byte, with a value from 0 to 255 inclusive, is returned to each
specified numeric-variable.

You can specify multiple addresses and numeric-variable-lists by entering
a null string (two adjacent quotation marks) as a separator between a
numeric-variable-list and the next address.

If you call the PEEKV subprogram with invalid parameters, the computer may
function erratically. If this occurs, turn off the computer, wait several
seconds, then turn the computer back on.

Example

100 CALL PEEKV(6300,A1,A2,A3)
Returns the values in locations 6300, 6301, and 6302 in Al, A2, and A3,
respectively.

156

MYARC ADVANCED BASIC

Programs

The following program illustrates a use of the PEEKV subprogram.

100 CALL CLEAR
110 CALL POKEV(32* 16+12,66)
120 CALL PEEKV(32* 16+12,A)
130 PRINT A

Line 110 pokes a "B" into a location that causes it to
appear of the screen. Line 120 peeks at that location, and
assigns there (66) to the variable A.

The next program starts a sprite moving diagonally across the
120 assigns the values of the row and column coordinates of
and X, respectively.

100 CALL CLEAR
110 CALL SPRITE(#1,33,5,100,100,25,25)
120 CALL PEEKV(VALHEX("300"),X,Y)
130 DISPLAY AT(24,1):Y;X
140 GOTO 120
(Press CLEAR to stop the program.)

PI --Function--Pi

Format
PI

Type
REAL

Description
The PI function returns the value of pi.

The value of pi is 3.14159265359.

Example

100 VOLUME=4/3*PI*6'3
Sets VOLUME equal to four-thirds times pi times six cubed,
volume of a sphere with a radius of six.

PI

which is the

157

in the middle
the value found

screen. Line
the sprite to Y

MYARC Advanced BASIC

POINT --Subprogram POINT

Format
CALL POINT(pixel-type,pixel-row,pixel-column[,pixel-row,pixel-column2[,...]])

Cross Reference
CIRCLE, DCOLOR, DRAW, DRAWTO, FILL, GCHAR, GRAPHICS, RECTANGLE

Description
The POINT subprogram enables you to place, or erase specific points (pixels)

on the screen, one or more at a time.

Pixel-type is a numeric-expression whose value specifies the action taken
by the POINT subprogram.

TYPE ACTION

2 Reverses the status of the specified point (pixel). (If
a pixel is on, it is turned off; if a pixel is off, it is
turned on). This effectively reverses the color of the
specified pixel.

1 Places a point, of the foreground-color specified by the
DCOLOR subprogram, at a specified pixel-row and pixel-
column. This is accomplished by turning on the pixel at
the designated row and column.

0 Erases a point at a specified pixel-row and pixel-column.
This is accomplished by turning on the pixel at the
designated row and column.

Pixel-row and pixel-column are numeric-expressions whose values represent
the screen position where the point will be placed (turned on or off).

You can optionally place more points by specifying additional sets of
pixels.

Pixel-row and pixel-column must be within the range of the particular
graphics mode of the screen.

The last pixel-row/pixel-column you specify becomes the current position
used by the DRAWTO subprogram.

POINT cannot be used in Pattern or Text Modes.

Example

100 CALL POINT(1,96,128)
Turns on a single pixel in the center of the screen.

158

MYARC ADVANCED BASIC

POKEY --Subprogram--Poke to VDP RAM POKEY

Format
CALL POKEV(address,byte-list[,"",address,byte-list[,...]])

Cross Reference
LOAD,PEEK,PEEKV,VALHEX

Description
The POKEV subprogram enables you to assign values directly to specified
VDP memory addresses.

You can use the LOAD subprogram to assign values to CPU.

The address is a numeric-expression whose value specifies the first
VDP(Video Display Processor) memory address where data is to be poked.
If the byte-list specifies more than one byte of data, the bytes are
assigned to sequential memory addresses starting with the address

 you specify.

 The address must have a value from 0 to 16383 inclusive.

If you know the hexadecimal value of the address (>0000->3FFF), you
can use the valhex function to convert it to a decimal numeric-
expression.

 If necessary, the address is rounded to the nearest integer.

The byte-list consists of one or more bytes of data, separated by
commas, that are to be poked into VDP memory starting with the
specified address.

Each byte in the byte-list must be a numeric-expression with a value
from 0 to 32767. If the value of a byte is greater than 255, it is
repeatedly reduced by 256 until it is less than 256. If necessary, a
byte is rounded to the nearest integer.

You can specify multiple addresses and byte-lists by entering a null
string(two adjacent quotation marks) as a separator between a byte-list
and the next address.

If you call the POKEV subprogram with invalid parameters the computer may
function erratically. If this occurs, turn off the computer, wait several
seconds, then turn the computer back on.

Examples
100 CALL POKEV(3333,233)
Pokes the value 233 into location 3333.

100 CALL POKEV(13784,273)
Pokes the value 17 (273 reduced bye 256 once) into location 13784.

100 CALL POKEV(7343,246,"",VALHEX("2E4F"),433)
Pokes the value 246 into location 7343, and uses VALHEX to ascertain the
decimal value equivalent of the hexadecimal number 2E4F (11855). The value
177(433 reduced by 256 once) is then poked into this location.

159

MYARC Advanced BASIC

Program

The following program uses POKEV to display on the screen the characters
that correspond to ASCII codes 65 through 255, at the specified by line
130.

1 CALL GRAPHICS(1,1)
100 CALL CLEAR :: X=0
110 FOR R=0 TO 23
120 FOR C=0 TO 31 STEP 3
130 CALL POKEV(R*32+C)+1024,X)
140 X=X+1::NEXT C :: NEXT R

160

MYARC ADVANCED BASIC

POS --Function--Position POS

Format
POS(string-expression,substring,numeric-expression)

Type
DEFINT

Description
The POS function returns the position of the first occurrence of a substring
within a specified string.

The string-expression specifies the string within which you are seeking
the substring. If you use a string constant, it must be enclosed in
quotation marks.

The substring is the segment (of the string-expression) you are trying
to locate. The substring is a string-expression; if you use a string
constant, it must be enclosed in quotation marks.

The value of the numeric-expression specifies the character position
in the string-expression where the search for the substring begins.

If necessary, the value of the numeric-expression is rounded to the
nearest integer.

If the substring is present within the string-expression, POS returns the
number of the character position (within the string-expression) of the
first character of the substring.

If the substring is not present, or if the value of the numeric-expression
is greater than the number of characters in the string-expression, POS
returns a zero.

Examples

100 X=POS("PAN","A",1)
Sets X equal to 2 because A is the second letter in PAN.

100 Y=POS("APAN","A",2)
Sets Y=3 because the A in the third position in APAN is the first occurrence
of A in the portion of APAN that was searched.

100 Z=POS("PAN","A",3)
Sets Z equal to 0 because A was not in the part of PAN that was searched.

100 R=POS("PABNAN","AN",1)
Sets R equal to 5 because the first occurrence of AN starts with the A in the
fifth position in PABNAN.

161

MYARC Advanced BASIC

Program

The following program illustrates a use of POS. Input is searched for
spaces, and is then printed with each word on a single line.

100 CALL CLEAR
110 PRINT "ENTER A SENTENCE."
120 LINPUT X$
130 S=POS(X$," ",1)
140 IF S=0 THEN PRINT X$::PRINT::GOTO 110
150 Y$=SEG$(X$,1,5)::PRINT Y$
160 X$=SEG$(X$,S+1,LEN(X$))
170 GOTO 130
(Press CLEAR to stop the program.)

162

MYARC ADVANCED BASIC

POSITION --Subprogram POSITION

Format
CALL POSITION(#sprite-number,numeric-variable1,numeric-variable2[,...])

Cross Reference
SPRITE

Description
The POSITION subprogram enables you to ascertain the current position of
one or more sprites.

The sprite-number is a numeric-expression whose value specifies the
number of the sprite as assigned in the SPRITE subprogram.

The current screen position of a sprite is returned as two numeric-
variables representing the pixelrow and pixelcol, respectively,
specifing the position of a screen pixel.

The screen position of the pixel in the upper-left corner of a sprite is
considered to be the position of that sprite.

Note that a sprite in motion continues to move during and following the
execution of the POSITION subprogram. Remember to allow for this continued
motion in your program.

Example

100 CALL POSITION(#1,Y,X)
Returns the position of the upper left corner of sprite #1. Also see the
third example of the SPRITE subprogram.

163

MYARC Advanced BASIC

PPT PPT

Cross Reference
LPT,KEY LIST,KEY

Description
Prints current printer device-name or output device name to screen.
i.e. LPT path.filename would list program in memory to a storage device
when LLIST is used
from the command prompt. PPT is a command only.

PRINT PRINT

Format
Print to the screen
 PRINT [print-list]
Print to a File (or Device)
 PRINT #file-number[,REC record-number][:print-list]

Cross Reference
DISPLAY,OPEN,PRINT USING,TAB

Description
The PRINT instruction enables you to display data items on the screen or
print them to an external device. You can use PRINT as either a program
statement or a command.

The print-list consists of one or more items(items to be printed or
displayed) separated by print separators. A PRINT instruction
without a print-list advances the print position to the first
position of the next record. This has the effect of printing a blank
record, unless the preceding PRINT instruction ended with a print-
separator.

The numeric- and/or string-expressions in the print-list can be
constants and/or variables.

Print items are the numeric- and string expressions to be printed. Any
function is also a valid print item.

Print separators are the punctuation(commas, semicolons, and colons)
between print items specifying the placement of the print items in the
print record.

Printing to the Screen

Each print item is displayed in the row of the screen window defined by
the margins, starting from the far left column of the window. Before a
new line is displayed at the bottom of the window, the entire contents of
the window(excluding sprites) scroll up one line to make room for the new
line. The contents of the top line of the window scroll off the screen
and are discarded.

164

MYARC ADVANCED BASIC

Each line on the screen is treated as one print record. The record length
of the screen is the width of the window.

Printing to a File

If you include an optional file-number, the print-list is sent to the
specified device. The file-number is a numeric-expression whose value
specifies the number of the file as assigned in its OPEN instruction.
You cannot print to a file opened in INPUT mode.

If you do not specify a file-number (or if you specify file-number 0),
the print-list is displayed on the screen.

If you use the REC option, the record-number is a numeric-expression whose
value specifies the number of the record in which you want to print the
print-list. The records in a file are numbered sequentially, starting with
zero. The REC option can be used only with a file opened for RELATIVE
access.

If you print to a file opened in INTERNAL format with FIXED records, each
record is filled with trailing binary zeros, if necessary, to bring it to
its specified length. If a record is longer than the record length of the
file, it is truncated (extra characters are discarded).

For more information about printing to a particular device, refer to the
owner's manual that comes with that device.

Printing Numbers: INTERNAL Files

The amount of memory space allocated to a number printed to a file opened in
INTERNAL format varies according to its data-type. A DEFINT is always
allocated 3 bytes, whereas a REAL number is always allocated 9 bytes.

Note that if you print a DEFINT value to a file, you cannot access that
file on a Home Computer that does not support the INTEGER data-type. You
can circumvent this by converting all DEFINT variables and functions to
REAL variables before printing them to a file.

Printing Numbers: The Screen and DISPLAY Files

The format of a number printed to the screen or to a file opened in DISPLAY
format varies according to the characteristics of the number.

Positive numbers and zero are printed with a leading space (instead of a
plus sign); negative numbers are printed with a leading minus sign. All
numbers are printed with a trailing space.

165

MYARC Advanced BASIC

Numbers are printed in either decimal form or scientific notation,
according to these rules:

All numbers with 10 or fewer digits are printed in decimal form.

REAL numbers with more than 10 digits are printed in scientific notation
only if they can be presented with more significant digits in scientific
notation than in decimal form. If printed in decimal form, all digits beyond
the tenth are omitted.

If a number is printed in decimal form, the following rules apply:

DEFINT numbers and REAL numbers with no decimal portion are printed
without decimal points.

REAL numbers are printed with decimal points in the proper position.
If the number has more than 10 digits, it is rounded to 10 digits. A
zero is not printed by itself to the left of the decimal point. Trailing
zeros after the decimal point are omitted.

If number is printed in scientific notation, the following rules

apply: The format is mantissaEexponent.

The mantissa is printed with six or fewer digits,•with one digit to
the left of the decimal point.

Trailing zeros are omitted after the decimal point of the mantissa.

If there are more than five digits after the decimal point of the
mantissa, the fifth digit is rounded.

The exponent is a two-digit number displayed with a plus or minus sign.

If you attempt to print a number with an exponent greater than 99 or
less than -99, the computer prints two asterisks (**) following the
sign of the exponent.

Printing Strings

A string constant in a print-list must be enclosed in quotation marks. A
quotation mark within a string constant is represented by two adjacent
quotation marks.

A string printed to a file opened in INTERNAL format has a length one
greater than the length of the string.

When a string is printed to the screen or to a file opened in DISPLAY
format, no leading or trailing spaces are added to the string.

166

MYARC ADVANCED BASIC

Print Separators

At least one print separator must be placed between adjacent print items in
the print-list. Valid print separators are the semicolon (;), the colon
(:), and the comma (,).

A semicolon (;) print separator causes the next print item to print
immediately after the current print item.

A colon (:) print separator causes the next print item to print at the
beginning of the next record. Consecutive colons used as print
separators must be divided by a space. Otherwise, they are treated as
a statement separator symbol.

If you print to the screen or to a file opened in DISPLAY format, a
comma (,) print separator causes the next print item to print at the
beginning of the next "zone." Print records are divided into 14-
character zones; the number of zones in a print record varies according
to its record length.

If you print to a file opened in INTERNAL format, a comma print separator
has the same effect as a semicolon print separator.

If a print separator would have the effect of splitting the next print item
between two records, the print item is moved to the beginning of the
following record. However, if discarding the trailing space from a numeric
print item allows it to fit in the current record, the number is printed in
the current record without its trailing space.

If the print-list ends with a print separator, the computer is placed in a
print-pending condition. Unless the next PRINT instruction includes the REC
option, it is considered to be a continuation of the current PRINT
instruction. RESTORE #file-number terminates a print-pending condition.

If the print-list is not terminated by a print separator, the computer
considers the current record complete when all the print items in the print-
list are printed. The first print-item in the next PRINT instruction begins
in the next record.

Examples

100 PRINT
Causes a blank line to appear on the display screen.

100 PRINT "THE ANSWER IS";A
Causes the string constant THE ANSWER IS to be printed on the display screen,
followed immediately by the value of ANSWER. If ANSWER is positive, there will
be a blank for the positive sign after IS.

100 PRINT X:Y/2
Causes the value of X to be printed on a line and the value of Y/2 to be
printed on the next line.

167

MYARC Advanced BASIC

100 PRINT #12,REC 7:A
Causes the value of A to be printed on the eighth record of the file
that was opened as number 12 with RELATIVE file organization. (Record
number 0 is the first record.)

100 PRINT #32:A,B,C,
Causes the values of A, B, and C to be printed on the next record of
the file that was opened as number 32. The final comma creates a
pending print-condition. The next PRINT statement directed to file
number 32 will print on the same record as this PRINT statement unless
it specifies a record, or a RESTORE #32 statement is executed, thereby
closing the print-pending print condition.

100 PRINT #1,REC 3:A,B
150 PRINT #1:C,D
Causes A and B to be printed in record 3 of the file that was
opened as number 1. PRINT #1:C,D causes C and D to be printed in
record 4 of the same file.

Program

The following program prints out values in various positions on the
screen.

100 CALL CLEAR
110 PRINT 1;2;3;4;5;6;7;8;9
120 PRINT 1,2,3,4,5,6
130 PRINT 1:2:3
140 PRINT
150 PRINT 1;2;3;
160 PRINT 4;5;6/4
RUN

1 2 3 4 5 6 7 8 9
1 2
3 4
5 6
1
2
3

1 2 3 4 5 1.5

168

MYARC ADVANCED BASIC

PRINT USING PRINT USING

Format
Print to the Screen

PRINT USING format-string[:print-list]
line-number

Print to a File (or Device)
PRINT #file-number[,REC record-number],USING format-string[print-list]

line-number

Cross Reference
IMAGE, PRINT

Description
The PRINT USING instruction enables you to define specific formats for
numbers and strings you print.

You can use PRINT USING as either a program statement or a command.

The format-string specifies the print format. The format-string is a
string expression; if you use a string constant you must enclose it
in quotation marks. See IMAGE for an explanation of format-strings.

You can optionally define a format-string in an IMAGE statement, as
specified by the line-number.

See PRINT for an explanation of the print-list print options.

The PRINT USING instruction is identical to the PRINT instruction with the
addition of the USING option, except that:

You cannot use the TAB function.

You cannot use any print separator other than a comma (,), except
that the print-list can end with a semicolon (;).

If you use PRINT USING to print to a file, the file must have been
opened in DISPLAY format.

Examples

100 PRINT USING "###.##":32.5
Prints 32.50.

100 PRINT USING "THE ANSWER IS ###.#":123.98
Prints THE ANSWER IS 124.0.

100 PRINT USING 185:37.4,-86.2
185 IMAGE ###.#
Prints the values of 37.4 and -86.2 using the IMAGE statement in line 185.

169

MYARC Advanced BASIC

RANDOMIZE RANDOMIZE

Format
RANDOMIZE[seed]

Cross Reference
RND

Description
The RANDOMIZE instruction varies the sequence of pseudo-random
numbers generated by the RND function.

You can use RANDOMIZE as either a program statement or a command.

The optional seed is a numeric-expression whose value specifies the
random number sequence to be generated by RND functions. The first
two bytes of the internal representation of the value of the seed
determine the random number sequence generated by RND. If the first
two bytes of the seed are identical each time you run your program,
the same random number sequence is generated. If you do not enter a
seed, a different and unpredictable sequence of random numbers is
generated by RND each time you run your program.

Program

The following program illustrates a use of the RANDOMIZE statement. It
accepts a value for the seed and prints the first 10 values obtained
using the RND function.

100 CALL CLEAR
110 INPUT "SEED: ":S
120 RANDOMIZE S
130 FOR A=1 TO 10::PRINT A;RND::NEXT A::PRINT
140 GOTO 110
(Press CLEAR to stop the program.)

170

MYARC ADVANCED BASIC

READ READ

Format
READ variable-list

Cross Reference
DATA, RESTORE

Description
The READ statement enables you to assign constants (stored within your
program in DATA statements) to variables.

The variable-list, consisting of one or more variables separated by
commas, specifies the numeric and/or string variables that are to be
assigned values. When a READ statement is executed, the variables in
its variable-list are assigned values from the data-list of a DATA
statement. Unless you use a RESTORE statement to specify otherwise,
DATA statements are read in ascending line-number order.

If a data-list does not contain enough values to assign to all the variables,
the READ statement assigns values from subsequent DATA statements until all
the variables have been assigned a value. If there are no more DATA
statements, a program error occurs and the message Data error in line-number
is displayed.

If a numeric variable is specified in the variable-list, a numeric constant
must be in the corresponding position in the data-list of a DATA statement. If
a string variable is specified in the variable-list, either a string or a
numeric constant can be in the corresponding position in the DATA statement.

See the DATA statement for examples.

171

MYARC Advanced BASIC

REC --Function--Record Number REC

Format
REC(file-number)

Type
DEFINT

Description
The REC function returns a record number reflecting the position of the
next record in the specified file.

The file-number is a numeric-expression whose value specifies the
number of the file as assigned in its OPEN instruction.

The REC function returns the number of the record in the specified
file that is to be accessed by the next PRINT, INPUT, or LINPUT
instruction (the next sequential record). (REC always treats a file as
if it were being accessed sequentially, even if it has been opened for
relative access.)

The records in a file are numbered sequentially starting with

zero. Example

100 PRINT REC(4)
Prints the position of the next record in the file that was opened as
number 4.

Program

The following program illustrates a use of the REC function.

100 CALL CLEAR
110 OPEN #1:"DSK1.PROFILE",RELATIVE,INTERNAL
120 FOR A=0 TO 3
130 PRINT #1:"THIS IS RECORD",A
140 NEXT A
150 RESTORE #1
160 FOR A=0 TO 3
170 PRINT REC(1)
180 INPUT #1:A$,B
190 PRINT A$;B
200 NEXT A
210 CLOSE #1
RUN

172

MYARC ADVANCED BASIC

0
THIS IS RECORD 0
1
THIS IS RECORD 1
2
THIS IS RECORD 2
3
THIS IS RECORD 3

Line 110 opens a file.

Lines 120 through 140 write four records on the file.

Line 150 resets the file to the beginning.

Lines 160 through 200 print the file position and read and print the
values at that position.

Line 210 closes the file.

173

MYARC Advanced BASIC

RECTANGLE --Subprogram RECTANGLE

Format
CALL RECTANGLE(line-type,pixel-rowl,pixel-columnl,
pixel-row2,pixel-column2,pixel-row3 ,pixel-column3[,...]])

Cross Reference
CIRCLE, DCOLOR, DRAW, DRAWTO, FILL, GRAPHICS, POINT

Description
The RECTANGLE subprogram enables you to place rectangles of various types and
proportions on the screen.

Rectangles may be hollow (only the perimeter of the rectangle is drawn), or
solid (both the perimeter and the entire area enclosed by the perimeter is
drawn).

Line-type is a numeric-expression whose value specifies the action taken by
the RECTANGLE subprogram.

TYPE ACTION

5 Reverses the status of each pixel of the specified
rectangle (solid). (If a pixel is on, it is turned off;
if a pixel is off, it is turned on). This effectively

reverses the color of the specified rectangle.

4 Draws a rectangle (solid), of the foreground-color
specified by the DCOLOR subprogram. This is accomplished
by turning on each pixel in the specified rectangle.

3 Erases a rectangle (solid). This is accomplished by
turning off each pixel in the specified rectangle.

2 Reverses the status of each pixel in the perimeter of the
specified rectangle. (If a pixel is on, it is turned
off; if a pixel is off, it is turned on.) This
effectively reverses the color of the perimeter.

1 Draws the perimeter of a rectangle, of the foreground-
color specified by the DCOLOR subprogram. This is
accomplished by turning on each pixel in the specified
rectangle.

0 Erases the perimeter of a rectangle. This is accomplished
by turning off each pixel in the specified rectangle.

Pixel-row(#), and pixel-column(#), are numeric-expressions whose values
represent the screen positions of specific points of the rectangle. There
are three points needed to define the rectangle, as shown below.

174

MYARC ADVANCED BASIC

Pixel-rowl / pixel-columnl specify the TOP LEFT corner of the rectangle.

Pixel-row2 / pixel-column2 specify the TOP RIGHT corner of
the rectangle.

Pixel-row3 / pixel-column3 specify the BOTTOM LEFT corner of
the rectangle.

All pixel-rows must have a value from 1 to 192. All pixel-columns
must have a value from 1 to 256.

Note that the first pixel set (pixel-rowl and pixel-columnl) represents the
top leftmost point of the rectangle and must have a lower column value than
the second pixel set. The second pixel set represents the top rightmost
point of the rectangle. In the same manner, the third pixel set, which
represents the bottom leftmost point of the rectangle, must have a higher
row value than setl or set2.

If the procedure outlined above is not followed, an error is issued.

You can optionally draw more rectangles by specifying additional sets of
pixels. You must specify three sets of pixels for each rectangle.

The bottom-rightmost point of the last rectangle drawn becomes the current
position used by the DRAWTO subprogram.

RECTANGLE cannot be used in Pattern or Text Modes.

Program
100 CALL GRAPHICS(1,2)
110 CALL RECTANGLE(1,8,80,8,175,134,80)
120 FOR T=1 TO 8 :: CALL RECTANGLE(4,T* 16,100,T* 16,155,T* 16+T-1,100)

NEXT T
130 FOR DELAY=1 TO 2000 :: NEXT DELAY
140 CALL RECTANGLE(3,16,100,16,155,128,100)
150 FOR DELAY=1 TO 2000 :: NEXT DELAY
160 END

Line 100 selects a usable graphics mode (and clears the

screen). Line 110 draws a large box on the screen.

Line 120 uses a for-next loop to fill the box with lines of different
thickness. (This shows how RECTANGLE could be used to replace DRAW.
RECTANGLE is slower, but more versatile.)

Line 130 uses a for-next loop to delay execution of the next statement.

Line 140 clears the lines, but leaves the box to illustrate how RECTANGLE
can be used as an eraser.

Line 150 delays the execution of the next statement.
Line 160 ends the program.

175

MYARC Advanced BASIC

REM --Remark REM

Format
REM remark
! remark

Description
The REM statement enables you to document your program by including
explanatory remarks within the program itself.

You can use any character in a remark.

The length of a REM statement is limited only by the length of a program
statement.

A REM statement encountered during program execution is ignored by the
computer.

Trailing Remarks

In addition to the REM statement, trailing remarks can be added to the ends
of lines in MYARC Advanced BASIC, allowing detailed internal documentation
of programs. An exclamation mark (!) begins each trailing remark.

Example

100 REM BEGIN SUBROUTINE
Identifies a section beginning a subroutine.

100 FOR X=1 to 16 ! BEGIN LOOP
Identifies a section beginning a FOR-NEXT loop.

176

MYARC ADVANCED BASIC

RESEQUENCE RESEQUENCE

Format
RESEQUENCE [initial-line-number][,increment]
RES

Description
The RESEQUENCE command assigns new line numbers to all lines in the program
currently in memory.

If you enter an initial-line-number, the first line number assigned is
one you specify. If you do not specify an initial-line-number, the
computer starts with line number 100.

Succeeding line numbers are assigned by adding the value of the numeric-
expression increment to the previous line number. Note that to specify an
increment only (without specifying an initial-line-number), you must
precede the increment with a comma. The default increment is 10.

To ensure that your program continues to function properly, all line-number
references within your program are changed to reflect the newly assigned line
numbers. (Line numbers mentioned in REM statements are not affected.) If an
invalid line-number reference (a reference to a line number that does not exist
in your program) is encountered, the computer changes the line-number reference
to 32767, without displaying any error message or warning.

If the values you enter for the initial-line-number and increment would
have the effect of creating a line number greater than 32767, the message
Bad line number is displayed and the program is not resequenced.

Examples

RES
Resequences the lines of the program in memory to start with 100 and number
by 10s.

RES 1000
Resequences the lines of the program to start with 1000 and number by 10s.

RES 1000,15
Resequences the lines of the program in memory to start with 1000 and number
by 15s.

RES ,15
Resequences the lines of the program in memory to start with 100 and number
by 15s.

177

MYARC Advanced BASIC

RESTORE RESTORE

Format
Restore Data

RESTORE [line-number]
Restore a File

RESTORE #file-number[,REC record-number]

Cross Reference
DATA, INPUT, PRINT, READ

Description
The RESTORE instruction specifies either the DATA statement to be used with
the next READ statement or the record to be accessed by the next file-
processing instruction.

RESTORE with DATA and READ Statements

If you enter a line-number, the next READ statement executed assigns
values beginning from the data-list in the specified DATA statement.

If the specified line-number is not the line-number of a DATA statement,
the computer uses the first DATA statement with a line-number higher than
the one you specified.

If there is no higher numbered DATA statement, a program error occurs and
the message Data error in line-number is displayed (the line-number is
the line number of the READ statement that caused the error).

If you do not enter a line-number or a file-number, the next READ
statement executed assigns values beginning from the data-list of the
first DATA statement in your program.

If there are no DATA statements in your program, the message Data
error in line-number is displayed.

RESTORE with a File

If you enter a file-number, RESTORE repositions the specified file at
its first record, record zero (unless you use the REC option). The
file-number is a numeric-expression whose value specifies the number
of the file as assigned in its OPEN instruction.

If you use the REC option, the record-number is a numeric-expression
specifying the number of the record at which you want to position the
file. The records in a file are numbered sequentially, starting with
zero. The REC option can be used only with a file opened for RELATIVE
access.

RESTORE terminates any print- or input-pending conditions.

178

MYARC ADVANCED BASIC

Examples

100 RESTORE
Sets the next DATA statement to be used to the first DATA statement in the
program.

100 RESTORE 130
Sets the next DATA statement to be used to the DATA statement at line 130
or, if line 130 is not a DATA statement, to the next DATA statement after
line 130.

100 RESTORE #1
Sets the next record to be used by the next PRINT, INPUT, or LINPUT statement
using file #1 to be the first record in the file.

100 RESTORE #4,REC H5
Sets the next record to be used by the next PRINT, INPUT, or LINPUT statement
using file #4 to be record H5.

179

MYARC Advanced BASIC

RETURN RETURN

Format

With GOSUB and ON GOSUB
RETURN

With ON ERROR
RETURN [NEXT

line-number]

Cross Reference
GOSUB, ON GOSUB, ON ERROR

Description

The RETURN statement causes program control to return to the main program

from a subroutine called by a GOSUB, ON GOSUB, or ON ERROR statement.

RETURN with GOSUB and ON GOSUB

When the computer encounters a RETURN statement in a subroutine called by a

GOSUB or ON GOSUB statement, program control returns to the statement
immediately following the GOSUB or ON GOSUB statement.

No options are allowed with a RETURN statement in a subroutine called by a
GOSUB or ON GOSUB statement.

RETURN with ON ERROR

The action taken by the computer when it encounters a RETURN statement in a
subroutine called by an ON ERROR statement depends on the RETURN option.

If you specify the NEXT option, program control returns to the statement
immediately following the statement that caused the error.

If you specify a line-number, program control is transferred to the
specified program statement.

If you do not specify an option, program control returns to the
statement that caused the error. The statement is re-executed.

RETURN "clears" the error, so that it can no longer be analyzed by the ERR
subprogram.

Programs

The following program illustrates a use of RETURN as used with GOSUB. The
program figures interest on an amount of money put into savings.

100 CALL CLEAR

110 INPUT "AMOUNT DEPOSITED: ":AMOUNT
120 INPUT "ANNUAL INTEREST RATE: ":RATE
130 IF RATE 1 THEN RATE=RATE* 100
140 PRINT "NUMBER OF TIMES COMPOUNDED"

180

MYARC ADVANCED BASIC

150 INPUT "ANNUALLY: "COMP
160 INPUT "STARTING YEAR: ":Y
170 INPUT "NUMBER OF YEARS: ":N
180 CALL CLEAR
190 FOR A=Y TO Y+N
200 GOSUB 240
210 PRINT A,INT(AMOUNT* 100+.5)/100
220 NEXT A
230 STOP
240 FOR 8=1 TO COMP
250 AMOUNT=AMOUNT+AMOUNT*RATE/(COMP* 100)
260 NEXT B
270 RETURN

The following program illustrates a use of RETURN with ON ERROR.

100 CALL CLEAR
110 A=1
120 ON ERROR 160
130 X=VAL("D")
140 PRINT 140
150 STOP
160 REM ERROR HANDLING
170 IF A>4 THEN 220
180 A=A+1
190 PRINT 190
200 ON ERROR 160
210 RETURN
220 PRINT 220 :: RETURN NEXT
RUN

190
190
190
190
220
140

Line 120 causes an error to transfer control to line 160. Line 130 causes
an error.

Line 170 checks to see if the error has occurred four times and transfers
control to 220 if it has. Line 180 increments the error counter by one.
Line 190 prints 190. Line 200 resets the error handling to transfer to line
160. Line 210 returns to the line that caused the error and executes it
again.

Line 220, which is executed only after the error has occurred four times, prints
220 and returns to the line following the line that caused the error.

Line 140, the next one after the one that causes the error, prints

140. See also example of the ON ERROR statement.

181

MYARC Advanced BASIC

RIGHTS RIGHT$

Format
RIGHT$(string-expression,length)

Cross Reference
LEFTS, POS, STR$

Description
RIGHT$ returns the right-most "length" of characters from the
string expression. If the string-expression is shorter than the
length, the actual string-expression will be returned.

Example

10 A$="MY NAME IS HARRY POTTER"
20 PRINT RIGHT$(A$,12)
RUN
HARRY POTTER

182

MYARC ADVANCED BASIC

RND --Function--Random Number RND

Format
RND

Type
REAL

Cross Reference
RANDOMIZE

Description
The RND function returns a pseudo-random number.

RND returns the next pseudo-random number in the current series of
pseudo-random numbers. The number returned is always greater than or equal
to 0 and less than 1.

The numbers returned by RND are called "pseudo-random" because they are not
generated strictly at random, but are generated as members of predefined series.
You can use the RANDOMIZE instruction to make the numbers generated by RND more
random.

The same sequence of random numbers is generated by RND each time you run
a particular program unless the program includes a RANDOMIZE instruction.

Examples

100 COLOR16=INT(RND* 16)+1
Sets COLOR16 equal to some number from 1 through 16.

100 VALUE=INT(RND* 16)+10
Sets VALUE equal to some number from 10 through 25.

100 LL(8)=INT(RND*(13-A+1))+A
Sets LL(8) equal to some number from A through B.

183

MYARC Advanced BASIC

RPT$ --Function--Repeat String RPT$

Format
RPT$(string-expression,numeric-expression)

Type
String

Description
The RPT$ function returns a string consisting of a specified string
repeated a specified number of times.

The string-expression specifies the string to be repeated. If you
use a string constant, it must be enclosed in quotation marks.

The value of the numeric-expression specifies the number of
repetitions of the string-expression.

If the length of the string-expression and the value of the numeric-
expression would create a string longer than 255 characters, the
excess characters are discarded and the following message is
displayed:

*WARNING
STRING TRUNCATED

Examples

100 M$=RPT$("ABCO",4)
Sets M$ equal to "ABCDABCDABCDABCD".

100 CALL CHAR(244,RPTW0000FFFF",8))
Defines characters 244 through 247 with the string
"000OFFFFOOOOFFFFOOOOFFFFOOOOFFFFOOOOFFFFOOOOFFFFOOOOFFFFOOOOFFFF".

100 PRINT USING RPT$("#",40):X$
Prints the value of X$ using an image that consists of 40 number signs

184

MYARC ADVANCED BASIC

RUN RUN

Format
Execute Program in Memory

RUN [line-number]
Execute Program on External Device

RUN file-specification[,Continue]

Description
The RUN instruction causes the computer either to execute the program
currently in memory or to both load and execute a program from an external.
You can use RUN as either a program statement or a command.

When you use RUN as a program statement, one program can start the execution
of another program. This enables you to divide a large program into smaller
segments, each of which can be loaded into memory only as needed.

If you specify a line-number, your program starts running at the
specified program line.

If you enter a file-specification, your program is first loaded into
memory from the specified external device, and then executed starting from
the lowest-numbered line in the program. The file-specification is a
string expression; if you use a string constant, you must enclose it in
quotation marks. If you additionally specify the Continue option, the new
program loaded must contain only variables used in the previous program.
A syntax error will occur when trying to use a variable not contained in
the previous program.

If you do not enter either a line-number or a file-specification, the
computer executes the program currently in memory starting with the lowest-
numbered line in the program.

Before the program starts running, the computer:

Sets the values of all numeric variables to zero.

Sets the values of all string variables to null strings (strings
containing no characters).

Closes all open files.

Restores the default screen color (cyan).

Deletes all sprites.

Resets the sprite magnification level to 1.

Checks for certain program errors.

RUN does not affect the graphics mode, margin settings, graphics colors
(see DCOLOR), or current position (see DRAWTO).

185

MYARC Advanced BASIC

Examples

RUN
Causes the computer to begin execution of the program in memory.

RUN 200
100 RUN 200
Causes the computer to begin execution of the program in memory
starting at line 200.

RUN "DSK1.PRG3"
100 RUN "DSK1.PRG3"
Causes the computer to load and begin execution of the program named
PRG3 from the diskette in disk drive 1.

100 A$="DSK1.MYFILE"
110 RUN A$
Causes the computer to load and begin execution of the program named
MYFILE from the diskette in disk drive 1.

Program

The following program illustrates a use of the RUN command used
as a statement. It creates a "menu" and lets the person using the
program choose what other program he wishes to run. The other programs
should RUN this program rather than ending in the usual way, so that
the menu is given again after they are finished.

100 CALL CLEAR
110 PRINT "1 PROGRAM 1."
120 PRINT "2 PROGRAM 2."
130 PRINT "3 PROGRAM 3."
140 PRINT "4 END."
150 PRINT
160 INPUT "YOUR CHOICE: "C
170 IF C=1 THEN RUN "DSK1.PRG1"
180 IF C=2 THEN RUN "DSK1.PRG2"
190 IF C=3 THEN RUN "DSK1.PRG3"
200 IF C=4 THEN STOP
210 GOTO 100

186

MYARC ADVANCED BASIC

SAVE SAVE

Format
SAVE file-specification[,INTERNAL][,MERGE][PROTECTED]

Cross Reference
MERGE, OLD

Description
The SAVE command copies the program in memory to an external storage
device. When you are using SAVE, your program remains in memory, even
if an error occurs.

The saved program can later be loaded back into memory with the OLD
command.

The file-specifications names the program to be stored. The file-
specification, a string constant, optionally can be enclosed in
quotation marks.

To specify that your program is to be available for merging with
other programs, use the MERGE option. If you use the MERGE option,
the program is stored as a SEQUENTIAL file in DISPLAY format with
VARIABLE records (DV/163)(see OPEN); MERGE can be used only with
devices that accept these options.

For more information about using MERGE with a particular device,
refer to the owner's manual that comes with that device.

If you do not use the MERGE option, your program cannot later be
merged with another program.

If you use the PROTECTED option, you ensure that the program, when
subsequentially loaded with the OLD command, cannot be listed,
edited, or saved.

As the PROTECTED option is not reversible, it is recommended that
you keep an unprotected version of the program. If you also wish
to protect a diskette-based program from being deleted,

 use the protect feature of the Disk Manager.

If you use the INTERNAL option, your program will be saved in
INTERNAL format with VARIABLE records and will be compatible with
the TI 99/4A. The program size in bytes should be limited to approx.
24K and cannot have ANY of the reserved words of MYARC

 Advanced BASIC.

SAVE removes any breakpoints you have set in your program.

Examples

SAVE PRG1
Saves program to the current working directory(see PWD or KEY LIST)

SAVE DSK1.PRG1
Saves the program in memory on the diskette or harddrive(if you have
emulate set) in disk drive 1 under the name PRG1.

187

MYARC Advanced BASIC

SAVE DSK1.PRG1,PROTECTED

Saves the program in memory on the diskette in disk drive 1 under the
name PRG1. The program may be loaded into memory, but it may not be
edited, listed(screen or printer), or resaved.

SAVE DSK1.PRG1,MERGE
Saves the program in memory on the diskette in disk drive 1 under the
name PRG1. The program may later be merged with a program in memory by
using the MERGE command.

188

MYARC ADVANCED BASIC

SAY --Subprogram SAY

Format
CALL SAY(word-string[,direct-string][,...])

Cross Reference
SPGET

Description
The SAY subprogram enables you to instruct the computer to produce
speech.

Word-string is a string-expression whose value is any of the words
or phrases in the computer's resident vocabulary. If you use a
string constant, you must enclose it in quotation marks. Alphabetic
characters must be upper-case.

The computer substitutes "UHOH" for a word-string not in the
vocabulary.

A speech phrase (more than one word) must be enclosed in pound
signs(#). A speech phrase must be predefined; that is it must be
resident in the computer's vocabulary.

A compound is a new word formed by combining two words already in
the vocabulary. For example, SOME+THING produces "something" and
THERE+FOUR produces "therefore". A compound must not be enclosed
in pound signs.

 See Appendix H for a list of the computer's resident vocabulary .

Direct-string is a string-expression whose value is the computer's
internal representation of a word or phrase. You can use or modify
a direct-string returned by the SPGET subprogram.

See Appendix I for information on adding suffixes to direct-strings. You
can specify multiple word-strings and direct-strings by alternating
them. To specify two consecutive word-strings or direct-strings, enter
an extra comma as a separator between them.

Examples
100 CALL SAY("HELLO, HOW ARE YOU")
Causes the computer to say "Hello, how are you".

CALL SAY(A$,,B$)
Causes the computer to say the words indicated by A$ and b$, which must
have been returned by SPGET.

The following program illustrates a use of CALL SAY with a word-string
and three direct-strings.

100 CALL SPGET("HOW",X$)
110 CALL SPGET("ARE",Y$)
120 CALL SPGET("YOU",Z$)
130 CALL SAY("HELLO",X$,,Y$,,Z$)

 189

MYARC Advanced BASIC

SCHAR --Subprogram SCHAR

Format
CALL SCHAR(char#,string-variable)

Cross Reference
CHAR,SPRITE

Description
The SCHAR subprogram enables you to define sprites and sprites only,
works just like CALL CHAR except CHAR defines characters and sprites.
The execption to this is switching to GRAPHICS(1,1) redefines both
characters and sprites.

SCREEN --Subprogram SCREEN

Format
CALL SCREEN(background-color)

Cross Reference
COLOR,DCOLOR,GRAPHICS

Description
The SCREEN subprogram enables you to change the screen color. The
screen color is the color of the border and the color displayed when
transparent is specified as the background-color of a character or
pixel.

In Text Mode, SCREEN enables you to change the color of the displayed
characters, as well as the color of the screen.

Background-color is a numeric-expression whose value specifies a
screen color from among the 16 available colors.

In GRAPHICS(1,1), when your program ends the default colors are
restored. In other modes, some set the edge of the screen to the
color selected, some set the complete screen including the edge,
some will transfer the color to the complete screen when you
switch modes.

The codes for the available colors are listed in Appendix F.

100 CALL SCREEN(8)
Changes the screen to cyan.

100 CALL SCREEN(2)
Changes the screen to black.

100 CALL GRAPHICS(2,3)
110 FOR X=1 TO 256
120 CALL SCREEN(X)
130 CALL TCOLOR(X,X)
140 DISPLAY :: NEXT X
150 CALL GRAPHICS(3,1)
Scrolls 256 colors to the screen, displays the color and sets the
edge, but not the border.

190

MYARC ADVANCED BASIC

Program

The following program uses CALL SCREEN with CALL VCHAR and PRINT in the
Text Mode to change the color of a character.

100 CALL CLEAR
110 CALL GRAPHICS(2,1)
120 CALL VCHAR(12,12,33,3)
130 CALL SCREEN(5,16)
140 PRINT "DARK BLUE SCREEN WITH WHITE LETTERS"
150 GOTO 150
(Press CLEAR to stop the program.)

Line 130 changes the screen to dark blue and the characters to white.

191

MYARC Advanced BASIC

SEG$ --Function--String Segment SEG$

Format
SEG$(string-expression, start-position,length)

Type
String

Description
The SEG$ function returns a specified substring (segment of a string).

The string-expression specifies the string of which you want to specify
a substring. If you use a string constant, it must be enclosed in
quotation marks.

The start-position is a numeric-expression whose value specifies the
character position in the string-expression where the substring begins.
The value of the start-position must be greater than zero.

The length is a numeric-expression whose value specifies the length of
the substring.

If the start-position is greater than the length of the string-expression,
or if the length is zero, SEG$ returns a null string.

If the specified length is greater than the remaining length of the string-
expression (starting from the specified start-position), SEG$ returns a
substring consisting of all characters in the string-expression starting
from the start-position to the end of the string-expression.

Examples

100 X$=SEG$("FIRSTNAME LASTNAME",1,9)
Sets X$ equal to FIRSTNAME.

100 Y$=SEG$("FIRSTNAME LASTNAME"11,8)
Sets Y$ equal to LASTNAME.

100 Z$=SEG$("FIRSTNAME LASTNAME",10,1)
Sets Z$ equal to " ".

100 PRINT SEG$(A$,B,C)
Prints the substring of A$ starting at the character at position B and
extending for C characters.

192

MYARC ADVANCED BASIC

SGN --Function--Signum (Sign) SGN

Format
SGN(numeric-expression)

Type
DEFINT

Description
The SGN function returns a number indicating the algebraic sign of the value
of the numeric-expression.

If the value of the numeric-expression is negative, SGN returns a -1.

If the value of the numeric-expression is zero, SGN returns a O.

If the value of the numeric-expression is positive, SGN returns a

(+)1. Examples

100 IF SGN(X2)=1 THEN 300 ELSE 400
Transfers control to line 300 if X2 is positive and to line 400 if X2 is zero
or negative.

100 ON SGN(X)+2 GOTO 200,300,400
Transfers control to line 200 if X is negative, line 300 if X is zero, and
line 400 if X is positive.

193

MYARC Advanced BASIC

SIN --Function--Sine SIN

Format
SIN(numeric-expression)

Type
REAL

Cross Reference
ATN, COS, TAN

Description
The SIN function returns the sine of the angle whose measurement in radians
is the value of the numeric-expression.

The value of the numeric-expression cannot be less than -
1.5707963267944E10 or greater than 1.5707963267944E10.

To convert the measure of an angle from degrees to radians, multiply pi/180.

Program

The following program gives the sine for each of several angles.

100 A=.5235987755982
110 B=30
120 C=45*PI/180
130 PRINT SIN(A);SIN(B)
140 PRINT SIN(B*PI/180)
150 PRINT SIN(C)
RUN
.5 -.9880316241
.5
.7071067812

194

MYARC ADVANCED BASIC

SOUND --Subprogram SOUND

Format
CALL SOUND(duration,frequencyl,volumel[,frequency2,volume2]
[,frequency3,volume3][,frequency4,volume4])

Description
The SOUND subprogram enables you to instruct the computer to produce musical
tones or noise.

The computer contains three music generators and one noise generator,
enabling you to create up to four different sounds at once. You can
specify the frequency and volume of each sound independently.

Duration is a numeric-expression whose absolute value specifies the
length of the sound in milliseconds (thousanths of seconds). Duration
can have an absolute value from 1 to 4250. (A value of 1000 will
produce a sound for one second.)

The actual duration produced by the computer may vary by as much as
one sixtieth (1/60) of a second from the value you specify.

You can enter only one duration, which applies to all specified
sounds (music and noise).

Frequency is a numeric-expression that has different meanings depending
on whether you use it to specify one of the music generators or the
noise generator.

You must enter at least one frequency.

The frequency of a music generator specifies the frequency of the
tone in Hertz (cycles per second). The acceptable values range from
110 to 44733; the upper limit exceeds the range of human hearing.

The actual frequency produced by the computer may vary by as much as
ten percent from the value you specify.

See Appendix C for the frequencies of some commomly used tones.

The frequency of the noise generator has a value from -1 to -8,
specifying the type of noise produced.

The frequencies from -1 to -3 produce different types of periodic noise.
A frequency of -4 produces a periodic noise that varies depending on the
frequency value of the third music generator.

The frequencies from -5 to -7 produce different types of white noise. A
frequency of -8 produces a white noise that varies depending on the
frequency value of the third music generator.

195

MYARC Advanced BASIC

Volume is a numeric-expression whose value is inversely proportional
to the loudness of the sound.

You must enter at least one volume.

The volume can be from 0 to 30. Zero is the maximum volume and 30 is
silence.

If you call SOUND while the computer is still producing the tones specified
in a previous call to the SOUND subprogram, the result depends on the algebraic
sign of the duration of the previous call to SOUND. If the duration was
positive, the new sound does not begin until the old sound is
complete. If the duration was negative, the new sound begins immediately,
interrupting the old sound.

Examples

100 CALL SOUND(1000,110,0)
Plays A below low C loudly for one second.

100 CALL SOUND(500,110,0,131,0,196,3)
Plays A below low C and low C loudly, and G below C not as loudly, all for
half a second.

100 CALL SOUND(4250,-8,0)
Plays loud white noise for 4.250 seconds.

100 CALL SOUND(DUR,TONE,VOL)
Plays the tone indicated by TONE for a duration indicated by DUR, at a volume
indicated by VOL.

Program

The following program plays *the 13 notes of the first octave that is
available on the computer.

100 X=2"(1/12)
110 FOR A=1 TO 13
120 CALL SOUND(100,110*X"A,O)
130 NEXT A

196

MYARC ADVANCED BASIC

THIS PAGE INTENTIONALLY BLANK.

197

MYARC Advanced BASIC

SPGET --Subprogram--Get Speech SPGET

Format
CALL SPGET(word-string,string-variable[,...])

Cross Reference
SAY

Description
The SPGET subprogram enables you to assign the computer's internal
representation of a speech word to a variable.

SPGET is especially useful if you want to add a suffix to a word in
the computer's resident vocabulary.

Word-string is a string-expression whose value is any of the words or
phrases in the computer's resident vocabulary. If you use a string
constant, you must enclose it in quotes.

The computer substitutes "UHOH" for a word-string not in the
vocabulary.

A speech phrase (more than one word) must be enclosed in pound
signs(#).

See Appendix for a list of the computer's resident vocabulary.

The internal representation of the word-string (the direct-string) is
returned in the string-variable.

See Appendix I for information on adding suffixes to direct-strings.

You can specify multiple word-strings and direct strings by
alternating them.

Program

The following program illustrates using CALL SPGET.

110 CALL SPGET("COMPUTER",Y$)
120 CALL SAY("I AM A",Y$)

198

MYARC ADVANCED BASIC

SPRITE --Subprogram SPRITE

Format
CALL SPRITE(#sprite-number,character-code,foreground-color,
pixel-row,pixel-column[, vertical-velocity,horizontal-velocity][,...])

Cross Reference
CHAR, COINC, COLOR, DELSPRITE, DISTANCE, GRAPHICS, LOCATE, MAGNIFY, MOTION,
PATTERN, POSITION, SCREEN

Description
The SPRITE subprogram enables you to create sprites.

Sprites are graphics that can be assigned any valid color and placed anywhere
on the screen. Sprites treat the screen as a grid 256 pixels high and 256
pixels wide. However, only the first 192 pixels are visible on the screen.

You can create up to 32 sprites in all graphics modes except Text Modes,
which do not allow sprites (the SPRITE subprogram has no effect in Text
Modes).

Sprites can be set in motion in any direction at a variety of speeds. A
sprite continues its motion until it is specifically changed by the program or
until program execution stops. Because sprites move from pixel to pixel, their
motion can be smoother than that of characters, which can be moved only one
character position (6 or 8 pixels) at a time.

Sprites "pass over" characters on the screen. When two or more sprites are
coincident (occupying the same screen pixel position), the sprite with the
lowest sprite-number covers the other sprite(s).

At any given time, only four sprites (in Graphics(1,1) and (1,2)) or eight
sprites (in the other graphics modes) can be on the same horizontal pixel-
row. Once this limit is exceeded the row of pixels in the sprite(s) with
the highest sprite-number(s) disappears.

You can use the DELSPRITE subprogram to delete one or more sprites. All
sprites are deleted when your program ends (either normally or because of
an error), stops at a breakpoint, or changes graphics mode.

Sprite Specifications

The sprite-number is a numeric-expression with a value from 1 to 32. If
you specify the value of a previously defined sprite, the old sprite is
replaced by the new sprite. If the old sprite had a vertical- or
horizontal-velocity and you do not specify a new velocity, the new
sprite retains the old velocity.

Character-code is a numeric-expression with a value from 0-255,
specifying the character that defines the sprite pattern.

If you use the MAGNIFY subprogram to change to double-sized sprites, the

199

MYARC Advanced BASIC

sprite definition includes the character specified by the character-
code and three additional characters (see MAGNIFY).

Once defined by the SPRITE subprogram, the character-code of a sprite
can be changed by the PATTERN subprogram.

The foreground-color is a numeric-expression with a value from 1 to
16, specifying one of the 16 available colors. Once defined by the
SPRITE subprogram, the foreground-color of a sprite can be changed by
the COLOR subprogram.

The background-color of a sprite is always transparent.

The pixel-row and pixel-column are numeric-expressions whose values
specify the screen pixel position of the pixel at the upper-left corner
of the sprite.

Once defined by the SPRITE subprogram, the pixel-row and pixel-column
of a sprite can be changed by the LOCATE subprogram, and the current
pixel-row and pixel column of a sprite can be ascertained by the
POSITION subprogram. Also, the distance between sprites or between a
sprite and a specified screen pixel can be ascertained by the DISTANCE
subprogram, and the COINC subprogram can be used to ascertain whether
sprites are coincident with each other or with a specified screen pixel.

Sprite Motion

The optional vertical- and horizontal-velocity are numeric-expressions
with values from -128 to 127. If both values are zero, the sprite is
stationary. The speed of a sprite is in direct linear proportion to the
absolute value of the specified velocity.

A positive vertical-velocity causes the sprite to move toward the top
of the screen; a negative vertical-velocity causes the sprite to move
toward the bottom of the screen.

A positive horizontal-velocity causes the sprite to move to the right; a
negative horizontal-velocity causes the sprite to move to the left.

If neither the vertical- nor horizontal-velocity are zero, the sprite
moves at an angle, in a direction and at a speed determined by the
velocity values.

The velocity of a sprite can be changed by the MOTION subprogram.

When a moving sprite reaches an edge of the screen, it disappears. The
sprite reappears in the corresponding position at the opposite edge of the
screen.

The motion of a sprite may be affected by the computer's internal processing
and by input to, and output from, external devices.

200

MYARC ADVANCED BASIC

Program

The following three programs show some possible uses of sprites.

100 CALL CLEAR
110 CALL CHAR(244,"FFFFFFFFFFFFFFFF")
120 CALL CHAR(246,"183C7EFFFF7E3C18")
130 CALL CHAR(248,"FOOFFOOFFOOFFOOF")
140 CALL SPRITE(#1,244,5,92,124,#2,248,7,1,1)
150 CALL SPRITE(#28,33,16,12,48,1,1)
160 CALL SPRITE(#15,246,14,1,1,127,-128)
170 GOTO 170
(Press CLEAR to stop the program.)

Line 140 creates a dark blue sprite in the center of the screen and a red
striped sprite in the upper-right corner of the screen. Line 150 creates a
white sprite near the upper-left corner of the screen and starts it moving
slowly at a 45-degree angle down and to the right. The sprite is an
exclamation point.

Line 160 creates a dark red sprite at the upper-right corner of the screen and
starts it moving very fast at a 45 degree angle down and to the left.

The following program makes a rather spectacular use of sprites.

100 CALL CLEAR
110 CALL CHAR(244,"0008081C7F1C0808")
120 RANDOMIZE
130 CALL SCREEN(2)
140 FOR A=1 TO 28
150 CALL SPRITE(#A,244,INT(A/3)+3,92,124,A*INT(RND*4.5)
-2.25+A/2*SGN(RND-.5),A*INT(RND*4.5)-2.25+A/2*SGN(RND-.5))
160 NEXT A
170 GOTO 140
(Press CLEAR to stop the program.)

Line 110 defines character 244.

Line 150 defines the sprites, 28 in all. The sprite-number is the current
value of A. The character-value is 244. The sprite-color is INT(A/3)+3.
The starting dot-row and dot-column are 92 and 124, the center of the screen.
The row- and column-velocities are chosen randomly using the value of
A*INT(RNO*4.5)-2.25+A/2*SGN(RND-.5).

Line 170 causes the sequence to repeat.

The following program uses all the subprograms that relate to sprites except
for COLOR. They are CHAR, COINC, DELSPRITE, LOCATE, MAGNIFY, MOTION,
PATTERN, POSITION, and SPRITE.

The program creates two double-sized magnified sprites in the shapes of two
people walking along a floor. There is a barrier that one of them passes
through and the other jumps through. The one that jumps through goes a

201

MYARC Advanced BASIC

little faster after each jump, eventually catching the other one. When this
happens, they each become double-sized, unmagnified sprites and continue
walking. When they meet for the second time, the one that has been going
faster disappears and the other continues walking.

100 CALL CLEAR
110 S1$="0103030103030303030303030303030380C
0C08000COCOCOCOCOCOCOCOCOCOEO"
120 S2$="0103030103070F1818030303060C0C0E80C
0C08000EOF008CCCOC00060303038"
130 COUNT=O
140 CALL CHAR(244,51$)
150 CALL CHAR(248,S2$)
160 CALL SCREEN(14)
170 CALL COLOR(14,13,13)
180 FOR A=19 TO 24
190 CALL HCHAR(A,1,136,32)
200 NEXT A
210 CALL COLOR(13,15,15)
220 CALL VCHAR(14,22,128,6)
230 CALL VCHAR(14,23,128,6)
240 CALL VCHAR(14,24,128,6)
250 CALL SPRITE(#1,244,5,113,129,#2,244,7,113,9)
260 CALL MAGNIFY(4)
270 XDIR=4
280 PAT=2
290 CALL MOTION(#1,0,XDIR,#2,0,4)
300 CALL PATTERN(#1,246+PAT,#2,246-PAT)
310 PAT=-PAT
320 CALL COINC(ALL,CO)
330 IF CO>0 THEN 370
340 CALL POSITION(#1,YPOSI,XPOS1)
350 IF XPOS1>136 AND XPOS1<192 THEN 470
360 GOTO 300
370 REM COINCIDENCE
380 CALL MOTION(#1,0,0#2,0,0)
390 CALL PATTERN(#1,244,#2,244)
400 IF COUNT>0 THEN 540
410 COUNT=COUNT+1
420 CALL POSITION(#1,YPOS1,XPOS1,#2,YPOS2,XPOS2)
430 CALL MAGNIFY(3)
440 CALL LOCATE(#1,YPOS1+16,XPOS1+8,#2,YPOS2+16,XPOS2)
450 CALL MOTION(#1,0,XDIR,#2,0,4)
460 GOTO 340
470 REM #1 HIT WALL
480 CALL MOTION(#1,0,0)
490 CALL POSITION(#1,YPOS1,XPOS1)
500 CALL LOCATE(#1,YPOS1,193)
510 XDIR=XDIR+1
520 CALL MOTION(#1,0,XDIR)
530 GOTO 300
540 REM SECOND COINCIDENCE
550 FOR DELAY=1 TO 1000 :: NEXT DELAY

202

MYARC ADVANCED BASIC

560 CALL MOTION(#2,0,4)
570 CALL DELSPRITE(#1)
580 FOR STEP1=1 TO 20
590 CALL PATTERN(#2,248)
600 FOR DELAY=1 TO 40 :: NEXT DELAY
610 CALL PATTERN(#2,244)
620 FOR DELAY=1 TO 40 :: NEXT DELAY
630 NEXT STEP1
640 CALL CLEAR

Lines 110, 120, 140, 150, 250, and 260 define the sprites.

Line 130 sets the meeting counter to zero.

Lines 170 through 200 build the floor.

Lines 210 through 240 build the barrier.

Line 270 sets the starting speed of the sprite that will speed up.

Line 290 sets the sprites in motion.

Line 300 creates the illusion of walking.

Line 320 checks to see if the sprites have met. Line 330 transfers control
if the sprites have met.

Lines 340 and 350 check to see if the sprite has reached the barrier and
transfer control if it has.

Line 360 loops back to continue the walk.

Lines 370 through 460 handle the sprites running into each other. Lines
380 and 390 stop them.

Line 400 checks to see if it is the first meeting.

Line 410 increments the meeting counter.

Line 420 finds the sprites position.

Line 430 makes them smaller.

Line 440 puts them on the floor and moves the fast one slightly ahead.

Line 450 starts them moving again.

Lines 470 through 530 handle the fast sprite jumping through the barrier.
Line 480 stops it.

Line 490 finds where it is.

Line 500 puts it at the new location beyond the barrier.

203

MYARC Advanced BASIC

Lines 510 and 520 start it moving again, a little faster.

Lines 540 through 640 handle the second meeting.

Line 560 starts the slow sprite moving.

Line 570 deletes the fast sprite.

Lines 580 through 630 make the slow sprite walk 20 steps.

204

MYARC ADVANCED BASIC

SQR --Function--Square Root SQR

Format
SQR(numeric-expression)

Type
REAL

Description
The SQR function returns the positive square root of the value of the
numeric-expression.

The value of the numeric-expression cannot be

negative. Examples

100 PRINT SQR(4)
Prints 2.

100 X=SQR(2.57E5)
Sets X equal to the square root of 257,000, which is 506.9516742255.

205

MYARC Advanced BASIC

STOP STOP

Format
STOP

Cross Refernce
END

Description
The STOP statement stops the execution of your program.

When your computer encounters a STOP statement, the computer performs the
following operations:

It closes all open files.

It restores the default character definitions of all characters.

Restores the default foreground-color (black) and background-color
(transparent) to all characters.

Restores the default screen color (cyan).

Deletes all sprites.

Resets the sprite magnification level to 1.

The graphics colors (see DCOLOR) and current position (see DRAWTO) are not
affected. If the computer is in Pattern or Text Mode the graphics mode and
margin settings remain unchanged.

A STOP statement is not necessary to stop your program; the program
automatically stops after the highest-numbered line is executed.

STOP is frequently used before a subprogram that follows the main portion
of a program, to ensure that the subprogram is not executed after the
execution of the highest-numbered line in the main program.

STOP can be used interchangeably with the END statement, except that you
cannot use STOP to end a subprogram.

Program
The following program illustrates a use of the STOP statement. The program
adds the numbers from 1 to 100.

100 CALL CLEAR
110 TOT=O
120 NUMB=1
130 TOT=TOT+NUMB
140 NUMB=NUMB+1
150 IF NUMB>100 THEN PRINT TOT::STOP
160 GOTO 130

206

MYARC ADVANCED BASIC

STR$ --Function--String-Number STR$

Format
STR$(numeric-expression)

Type
String

Cross Reference
VAL

Description
The STR$ function returns the string representation of the value of the
numeric-expression.

STR$ enables you to use the string representation of the numeric-expression
with an instruction that requires a string-expression as a parameter.

STR$ is the inverse of the VAL function.

STR$ removes leading and trailing spaces.

Examples

100 NUM$=STR$(78.6)
Sets NUM$ equal to "78.6".

100 LL$=STR$(3E15)
Sets LL$ equal to "3.E+15".

100 X$=STR$(A*4)
Sets X$ equal to a string representation of whatever value is obtained
when A is multiplied by 4. For instance, if A is equal to -8, X$ is set
equal to "-32".

207

MYARC Advanced BASIC

SUB --Subprogram SUB

Format

SUB subprogram-name[(parameter[,...])]

Cross Reference
CALL, SUBEND, SUBEXIT

Description
The SUB statement is the first statement in a subprogram.

You can use a subprogram to separate a group of statements from the main
program. Subprograms are generally used to perform a specific operation
several times in the same program or in different programs, or to isolate
variables that are specific to the subprogram.

Subprograms are accessed from your main program with a CALL statement. The
subprogram-name in the SUB statement is the same name that you use in the
CALL statement that transfers control to the subprogram.

The maximum length of a subprogram-name is 15 characters.

A user-written subprogram may have the same subprogram-name as a built-
in subprogram. In such a case, a CALL statement will access the user-
written subprogram instead of the built-in one.

You can use parameters to pass values to a subprogram. Parameters must
be valid names of variables or arrays.

SUBEND must be the last statement executed in a subprogram. When the
computer encounters a SUBEND or a SUBEXIT statement in a subprogram, program
control returns to the statement immediately following the CALL statement
that called the subprogram.

It is recommended that you do not use any statement other than SUBEND or
SUBEXIT to leave a subprogram. If you use another statement to leave a
subprogram you may still be using variables local to the subprogram, which
may cause unexpected results.

Subprograms must have higher line numbers than any part of your main program.
A SUB statement cannot be part of an IF THEN statement.

Subprogram Variables

The variables used in a subprogram (other than those used as parameters) are
local to the subprogram; that is, even if a variable in your main program has
the same name as a variable in a subprogram, the value of that variable outside
the subprogram is not affected by changes to its value in the
subprogram. If a subprogram is called more than once, any local variables
used in the subprogram retain their values from one call to the next.

208

MYARC ADVANCED BASIC

Parameters

When your program executes a subprogram beginning with a SUB statement with
parameters, the parameter values (constants or variables) are passed from the
parameter-list of the CALL statement to the subprogram. The parameter-list
in the CALL statement must contain the same number of parameters as the SUB
statement. Values are passed in the order in which they are listed.

A numeric parameter must be passed a numeric value. A string parameter must
be passed a string value.

An array parameter must be passed an array. A string-array parameter must
be passed a string array.

To pass an entire array as one parameter, follow the array name with left
and right parentheses. If the array has more than one dimension, place one
comma between the parentheses for each additional dimension.

Passing Parameters by Reference and Value

When a subprogram manipulates the value of a parameter passed to it, the
new parameter value may or may not be passed back to the main program. When
a parameter is passed to a subprogram "by reference", the new value is
passed back to the main program after the subprogram has executed.

When a parameter is passed to a subprogram "by value", the new value is not
passed back to the main program.

Variables, array elements, and arrays are normally passed by reference.
However, if a numeric variable or array element is of a different data-
type in the main program than it is in the subprogram, the parameter
is passed by value.

To specify that a variable or array element is to be passed by value
rather than by reference, enclose it in parentheses in the CALL
statement's parameter-list. Note that this option is not available for
arrays.

If you use an expression as a parameter, it is evaluated and passed by
value.

Examples

100 SUB MENU
Marks the beginning of a subprogram. No parameters are passed or returned.

100 SUB MENU(COUNT,CHOICE)
Marks the beginning of a subprogram. The variables COUNT and CHOICE may be
used and/or have their values changed in the subprogram and returned to the
variables in the same position in the calling statement.

209

MYARC Advanced BASIC

100 SUB PAYCHECK(DATE,Q,SSN,PAYRATE,TABLE(,))
Marks the beginning of a subprogram. The variables DATE, Q, SSN, PAYRATE, and
the array TABLE with two dimensions may be used and/or have their values changed
in the subprogram and returned to the variables in the same position in the
calling statement.

Program

The following program illustrates a use of SUB. The subprogram MENU had been
previously saved with the MERGE option. It prints a menu and requests a choice.
The main program tells the subprogram how many choices there are and

what the choices are. It then uses the choice made in the subprogram to
determine what program to run.

100 CALL MENU(5,R)
110 ON R GOTO 120,130,140,150,160
120 RUN "DSK1.PAYABLES"
130 RUN "DSK1.RECEIVE"
140 RUN "DSK1.PAYROLL"
150 RUN "DSK1.INVENTORY"

160 RUN "DSK1.LEDGER"

170 DATA ACCOUNTS PAYABLE,ACCOUNTS RECEIVABLE,PAYROLL,INVENTORY,GENERAL
LEDGER

Beginning of subprogram MENU.

Note that this R is not the same as the R used in lines 100 and 110 in the main

program.

10000 SUB MENU(COUNT,CHOICE)
10010 CALL CLEAR
10020 IF COUNT>22 THEN PRINT "TOO MANY ITEMS" CHOICE=O :: SUBEXIT
10030 RESTORE
10040 FOR R=1 TO COUNT
10050 READ TEMP$

10060 TEMP$=SEG$(TEMP$,1,25)

10070 DISPLAY AT(R,1):R;TEMP$
10080 NEXT R

10090 DISPLAY AT(R+1,1):"YOUR CHOICE: 1"

10100 ACCEPT AT(R+1,14)BEEP VALIDATE(DIGIT)SIZE(-2):CHOICE
10110 IF CHOICE>COUNT OR CHOICE<1 THEN 10100
10120 SUBEND

210

MYARC ADVANCED BASIC

SUBEND --Subprogram End SUBEND

Format
SUBEND

Cross Reference
SUB, SUBEXIT

Description
The SUBEND statement marks the end of a subprogram.

SUBEND must be the last statement executed in a subprogram. When the
computer encounters a SUBEND statement in a subprogram, program control
returns to the statement immediately following the CALL statement that
called the subprogram.

It is recommended that you do not use any statement other than SUBEND or
SUBEXIT to leave a subprogram. If you use another statement to leave a
subprogram you may still be using variables local to the subprogram, which
may cause unexpected results.

A SUBEND statement cannot be part of an IF THEN statement.

The only statements that can immediately-follow a SUBEND statement are REM,
END, or the SUB statement for the next subprogram.

211

MYARC Advanced BASIC

SUBEXIT --Subprogram Exit SUBEXIT

Format
SUBEXIT

Cross Reference
SUB, SUBEND

Description
The SUBEXIT statement enables you to leave a subprogram before the computer
executes the SUBEND statement that ends the subprogram.

SUBEXIT enables you to have more than one exit from a subprogram.

When the computer encounters a SUBEXIT statement in a subprogram, program
control returns to the statement immediately following the CALL statement
that called the subprogram.

It is recommended that you do not use any statement other than SUBEND or
SUBEXIT to leave a subprogram. If you use another statement to leave a
subprogram you may still be using variables local to the subprogram, which
may cause unexpected results.

212

MYARC ADVANCED BASIC

SWAP SWAP

Format
CALL SWAP var1, var2

Description
The SWAP statement is used to exchange the values of two variables,
provided they are of the same type and precision. If they are not of the
type an error will occur.

The SWAP statement cannot be used to "SWAP" the contents of two arrays,
except as individual elements.

There is a required space between SWAP and var1.

Examples

100 FOR I=1 TO 100
110 CALL SWAP A$(I),B$(I)
120 NEXT I

The SWAP statement can also be used to alphabetize two strings.

100 INPUT "STRING #1 >":A$
110 INPUT "STRING #2 >:B$
120 IF A$>B$ THEN CALL SWAP A$,B$
130 PRINT A$,B$

SWAP can also be used with a DEFvartype.

100 DEFSTR B
110 A$="TEST"
120 B$="TEST1"
130 SWAP A$,B
140 PRINT A$,B

213

MYARC Advanced BASIC

TAB --Function--Tabulate TAB

Format
TAB(numeric-expression)

Cross Reference
DISPLAY,PRINT

Description
The TAB function specifies the starting position of the next item to
be printed by a PRINT or DISPLAY instruction.

The numeric-expression specifies the starting position of the
next print item in a print-list of a PRINT or DISPLAY
instruction.

If the value of the numeric-expression is not an integer, it is
rounded to the nearest integer. If the value of the numeric-
expression is less than 1, it is replaced by 1.

If the value of the numeric-expression is greater than the record
length of the screen or device, it repeatedly reduced by the
record length until it is less than or equal to the record
length. The record length of the screen is the width of the
screen window defined by the margins. For more information
about the record length of a particular device, refer to the
owner's manual that comes with that device.

Because the TAB function itself is treated as a separate print item,
it must be preceded and /or followed by a print separator (usually a
semicolon), unless it is the only item in the print-list.

If the number of characters already printed in the current record is
greater than or equal to the position indicated by the value of the
numeric-expression, the print item following the TAB is printed in the
next record, beginning in the position specified by the value of the
numeric-expression.

TAB can be used to print to a device or file only if the device or
file has been opened in DISPLAY format.

TAB cannot be used with PRINT USING or DISPLAY USING.

Examples

100 PRINT TAB(12);35
Prints the number 35 at the twelfth position from left margin.

100 PRINT 356;TAB(18);"NAME"
Prints 356 at the beginning of the line and NAME at the eighteenth
position from the left margin.

100 PRINT "ABCDEFGHIJKLM";TAB(5);"NOP"
Prints ABCDEFGHIJKLM at the beginning of the line and NOP at the fifth
position of the next line.

214

MYARC ADVANCED BASIC

TAN --Function--Tangent TAN

Format
TAN(numeric-expression)

Type
REAL
Cross Reference
ATN,COS,SIN

Description
The TAN function returns the tangent of the angle whose measurement in radians
is the value of the numeric-expression.

 The numeric-expression cannot be less than -1.5707963269514E10 or
greater than 1.5707963266374E10.

To convert the measure to radians, multiply by pi/180.

Program

The following program gives the tangent for each of several angles.

100 A=.7853981633973
110 B=26.5650511177
120 C=45*PI/180
130 PRINT TAN(A);TAN(B)
140 PRINT TAN(B*PI/180)
150 PRINT TAN(C)
RUN
1. 7.17470553
.5
1

215

MYARC Advanced BASIC

TCOLOR --Subprogram TCOLOR

Format
CALL TCOLOR(foreground-color,background color)

Cross Reference
PALETTE

Description
The TCOLOR subprogram enables you to change the foreground-color and
background-color of text characters.

In bit map modes, the color set for a given portion of text remains even
when subsequent text is changed.

In text modes, when colors are changed, all text is changed at the same
time.

Color numbers range from 1 to the number of colors available to the
mode(4,16,256). See PALETTE

Example

100 CALL TCOLOR(16,5)

This sets the foreground-color to white and the background-color to dark
blue.

216

MYARC ADVANCED BASIC

TERMCHAR--Function--Termination Character TERMCHAR

Format
TERMCHAR

Type
DEFINT

Cross Reference
ACCEPT,INPUT,LINPUT

Description
The TERMCHAR function returns the character code of the key pressed to
exit from the previously executed INPUT, ACCEPT, or LINPUT statement.

In a program, the value returned by TERMCHAR depends on the key pressed
to exit from the last instruction that accepted input from the keyboard.

 VALUE RETURNED KEY
 1 F7 AID
 2 F4 CLEAR
 10 FX or DOWN ARROW
 11 FE or UP ARROW
 12 F6 PROC'D
 13 ENTER
 14 F5 BEGIN
 15 F9 BACK

If you use TERMCHAR as part of a command(unless it is preceded by
ACCEPT, INPUT, or LINPUT), the value returned depends on the key to
enter the command(ENTER, UP ARROW, or DOWN ARROW.

Note that pressing CLEAR during keyboard input normally causes a break
in the program. However, if your program includes an ON BREAK NEXT
statement, you can use CLEAR to exit from an input field.

Program

The following program illustrates a use of TERMCHAR. The program
displays name, address, and city, state, and zip code information
entered from the keyboard. Line 160 enables you to correct errors in
previously entered lines by pressing UP ARROW. This returns the cursor
to the beginning of the line that immediately precedes the one from
which UP ARROW was entered.

100 CALL CLEAR
110 R=5::C=12
120 DISPLAY AT(R,C-10):"NAME :"
130 DISPLAY AT(R+1,C-10):"ADDRESS:"
140 DISPLAY AT(R+2,C-10):"C,S,Z:"
150 ACCEPT AT(R,C)SIZE(-20):A$(R)
160 IF TERMCHAR=11 THEN R=R-1 ELSE R=R+1
170 IF R=8 THEN 180 ELSE 150
180 DISPLAY AT(20,1):A$(5):A$(6):A$(7)

217

MYARC Advanced BASIC

TIME/TIME$ TIME/TIME$

Description
The computer has an internal clock that can be accessed from BASIC.

TIME$ can be used to read the clock and TIME to set the clock.

TO SET CLOCK

Format
CALL TIME("hh:mm:ss")

The string length is always 8 characters. Therefore an hour less than
10 must be preceded by a 0.

The clock works on 24 hour time so all times after 12 noon must have
12 hours added to them.

Example

CALL TIME("06:15:00") 6:15 A. M.
CALL TIME("18:15:00") 6:15 P. M.

TO READ CLOCK

Format
PRINT TIME$
OR
T$=TIME$

Example

10 CALL CLEAR
20 DISPLAY AT(24,1):TIME$
30 GOTO 20

10 CALL TIME("00:00:00")
20 FOR I=1 TO 10000
30 NEXT I
40 PRINT TIME$

This is an easy to see how long a program takes to execute.

218

MY-ARC ADVANCED BASIC

TRACE TRACE

Format
TRACE ON
TRACE OFF

Description
The TRACE ON instruction causes the computer to display the line number of
each line in your program before it is executed.

TRACE ON enables you to see the order in which the computer performs
statements as it runs your program. It is valuable as a debugging aid to
help you find errors (such as unwanted infinite loops) in your program.

TRACE OFF removes the effect of the TRACE ON command.

You can use TRACE ON or TRACE OFF either as a program statement or a command.

Programs

The following programs display a trace of the order of execution of the
program lines.

100 FOR J=1 TO 3
110 PRINT "WORD"
120 NEXT J
130 TRACE ON
RUN

100 FOR J=1 TO 3
110 PRINT "WORD"
120 NEXT J
TRACE ON
RUN

219

MYARC Advanced BASIC

UNBREAK UNBREAK

Format
UNBREAK [line-number-list]

Cross Reference
BREAK

Description
The UNBREAK instruction removes a breakpoint from each program statement you
specify.

You can use UNBREAK as either a program statement or a command.

The line-number-list consists of one or more line numbers separated by
commas. When an UNBREAK instruction is executed, breakpoints are
removed from the specified program lines.

If you do not include a line-number-list, UNBREAK removes all
breakpoints, except for a breakpoint that occurs when a BREAK statement
with no line-number-list is encountered in a program.

If the line-number-list includes an invalid line number (0 or a value greater
than 32767), the message Bad line number is displayed. If the
line-number-list includes a fractional or negative line number, the message
Syntax error is displayed. In both cases, the UNBREAK instruction is
ignored; that is, breakpoints are not removed even at valid line numbers in
the line-number-list. If you were entering UNBREAK as a program statement,
it is not entered into your program.

If the line-number-list includes a line number that is valid (1-32767) but
is not the number of a line in your program, or a fractional number greater
than 1, the message

* WARNING
LINE NOT FOUND

is displayed. (If you were entering UNBREAK as a program statement, the
line-number is included in the warning message). A breakpoint is, however,
removed from any valid line in the line-number-list that precedes the line
number that caused the warning.

Examples

UNBREAK
450 UNBREAK

Removes all breakpoints (except those resulting from a BREAK statement with
no line-number-list).

UNBREAK 100,130
350 UNBREAK 100,130
Removes the breakpoints from lines 100 and 130.

220

MYARC ADVANCED BASIC

VAL --Function--Value VAL

Format
VAL(string-expression)

Type
REAL

Cross Reference
STR$

Description
The VAL function returns the numeric value of the string-expression.

VAL enables you to use the numeric value of the string-expression with an
instruction that requires a numeric-expression as a parameter.

VAL is the inverse of the STR$ function.

The string-expression must be a valid representation of a number. The
length of the string-expression must be greater than 0 and less than
255. If you use a string constant, it must be enclosed in quotation
marks.

Examples

100 NUMB=VAL("78.6")
110 PRINT NUMB
Prints 78.6.

100 LL=VAL("3E15")
Sets LL equal to 3E+15, or 315.

221

MYARC Advanced BASIC

VALHEX --Function--Value of Hexadecimal Number VALHEX

Format
VALHEX(string-expression)

Type
DEFINT

Description
VALHEX returns the numeric value of the hexadecimal number represented by the
string-expression.

The string-expression specifies the hexadecimal (base 16) number to be
converted to a decimal (base 10) number. If you use a string constant,
it must be enclosed in quotation marks.

The string-expression must contain only valid hexadecimal digits
(0-9,A-F). Alphabetic hexadecimal digits must be upper-case letters.
VALHEX can convert a hexadecimal number from one to four digits long.
If the length of the string-expression is greater than four, VALHEX
uses only the last four characters.

VALHEX returns an integer greater than or equal to -32768 (hexadecimal 8000)
and less than or equal to 32767 (hexidecimal 7FFF).

Examples

100 A=VALHEX("400A")
Sets A equal to 16394.

100 PRINT VALHEX("8200")
Prints -32256.

222

MYARC ADVANCED BASIC

VCHAR --Subprogram--Vertical Character VCHAR

Format
CALL VCHAR(row,column,character-code[,number-of-repetitions])

Cross Reference
DCOLOR, GCHAR, GRAPHICS, HCHAR

Description
The VCHAR subprogram enables you to place a character on the screen and
repeat it horizontally.

Row and column are numeric-expressions whose values specify the
position on the screen where the character is displayed.

The value of row must be greater than or equal to 1 and not exceed
the total number of rows in the present graphics mode.

The value of column must be greater than or equal to 1 and must not
exceed the total number of columns in the present graphics mode.

VCHAR is not affected by margin settings.

Character-code is a numeric-expression with a value from 0-255,
specifying the number of the character. See Appendix B for a list of
ASCII character codes.

The optional number-of-repetitions is a numeric-expression whose value
specifies the number of times the character is repeated horizontally. If
the repetitions extend past the end of a column, they continue from the
first character of the next column. If the repetitions extend past the
end of the last column, they continue from the first character of the
first column.

If you use VCHAR to display a character on the screen, and then later use
CHAR, COLOR, or DCOLOR to change the appearance of that character, the
result depends on the graphics mode.

In Pattern and Text Modes, the displayed character changes to the
newly specified pattern and/or color(s).

In High-Resolution Mode, the displayed character remains unchanged.

223

MYARC Advanced BASIC

Examples

100 CALL VCHAR(12,16,33)
Places character 33 (an exclamation point) in row 12, column 16.

100 CALL VCHAR(1,1,ASC("!"),768)
Places an exclamation point in row 1, column 1, and repeats it 768 times,
which fills the screen in Pattern Mode.

100 CALL VCHAR(R,C,K,T)
Places the character with an ASCII code specified by the value of K in row R,
column C, and repeats it T times.

224

MYARC ADVANCED BASIC

VERSION VERSION

Format
CALL VERSION(numeric-variable)

Description
The VERSION subprogram returns a value indicating the version of BASIC
being used.

In MYARC Advanced BASIC, VERSION returns a value of 400 to the
numeric-variable you specify.

Example

100 CALL VERSION(V)
Sets V equal to 400.

WEND WEND

The WEND statement terminates the loop that begins with WHILE.

Statements between WHILE and WEND are executed repeatedly until the
condition stated in the WHILE statement is no longer true.

Unlike FOR-NEXT statements, WHILE-WEND loops may NOT be nested. WEND
always continues the most recent while loop until the WHILE statement's
condition becomes false.

See WHILE for detailed description of the WHILE-WEND loop.

225

MYARC Advanced BASIC

WHILE WHILE

Format
WHILE condition ::program..... :: WEND

Cross Reference
WEND,FOR-NEXT,IF-THEN-ELSE

Description
The WHILE statement starts a loop which is executed repeatedly while
the WHILE 'condition' is true. The loop is terminated with a WEND
statement.

'Condition' is a logical expression, numeric or variable that WHILE
evaluates. If the 'condition' is TRUE (or a non/zero value, i.e.
condition<>0), the program then loops between the WHILE and the WEND
statements. When the condition is no longer TRUE (false or
condition=0) WHILE passes execution to the statement after WEND.

Unlike FOR-NEXT statements WHILE-WEND loops may NOT be nested.

Example

100 WHILE S=0 THEN 110
110 CALL KEY(0,K,S)
120 WEND
130 program lines
140 END

This short routine checks the entries into the keyboard buffer until
it is empty then proceeds to the rest of the program. The keyboard is
said to be "Flushed".

100 REM WHILE TEST
110 WHILE NAME$<>"LAST"
120 READ NAME$,PHONE$
130 COUNT=COUNT+1
140 PRINT NAME$;TAB(20);PHONE$
150 WEND
160 PRINT "NUMBER OF NAMES=";COUNT
170 PRINT "WHILE HAS BEEN EVALUATED TO FALSE"
180 DATA MYARC, 201-766-1700
190 DATA JIM UZZELL,201-000-0000
200 DATA LAST,LAST

226

MYARC ADVANCED BASIC

I/O DEFAULTS

MYARC Advanced BASIC includes several features to simplify the direction of
input and output to certain devices. These devices are your main storage
device(typically DSK1), your main printer (typically PIO). These defaults are
set from the operating system defaults when BASIC is initially started.

The following names are used for reassigning a particular default device:

 NAME DEVICE

 LPT Default printing device
 CHDIR Default disk drive or directory

These commands can not be used in a program as a program statement.

The following can be used as a program statement for reassigning a particular
device.

 KEY(11)="string-expression" Changes working directory or drive.
 KEY(12)="string-expression" Changes the printing device.

These are the only uses for these keys and should not be confused with the KEY
command.

To change a default, type the command and follow it by the desired device name.
For example, the LLIST command prints the program in memory to the main printer
port. If your printer is connected to the RS232 port and not the PIO port you
would need to redirect the output from LLIST. To do this type from the prompt

LPT RS232[.BA=4800.....]

To change drives or directory, from the prompt type CHDIR "path.[directory.]"

You may also check to see what a particular default is set for at any time. To
do this, type any of the following commands and BASIC will list what that device
is set for:

 COMMAND DEVICE

 PPT Lists the default printer
 PWD Lists the default working directory
 KEY LIST Lists both of the above and the default of FCTN keys 1-10.

227

MYARC ADVANCED BASIC

ADVANCED BASIC LOADING OPTIONS

When invoking Abasic from the MDOS command line or a batch file you may also want to
invoke several available options. One option is the amount of memory allocated to
data space. The following depicts the memory allocation for Abasic:

 ABASIC PROGRAM ASSEMBLY DATA
 INTER MEMORY LANGUAGE SPACE
 56K 64K SUBROUTINES VARIABLES
 ------------- 48K AND
 DATA STRINGS
 BUFFERS 64K OR
 8K GREATER

Memory allocation is fixed except for data space. Data space can be as small as
64K(the default amount), or as large as the available memory in your 9640. With a
standard GENEVE, this is limited to 192K minus any RAMDISK and/or SPOOLER rounded to
the nearest 8K multiple. Note: This could change if the size of MDOS changes.

To request data space greater than 64K, simply type a space followed by the amount of
memory desired (in 8K byte multiples i.e. 128,192) after typing ABASIC1 from the
command line of MDOS or in a batch file.

Another optional parameter in the command line or batch file is the selection of the
initial default directory and the initial program to be loaded and executed. In order
to set a different default directory in ABASIC, type a space and the desired
directory pathname ending with a period. ABASIC will set this as the default
directory and initially try to load and execute a file named "LOAD" on this
directory. If you would like to initially execute another program on the default
directory, simply enter the filename. Lastly, if you want to load the ABASIC
interpreter and inhibit the auto load of the initial program, enter an asterisk "*".
The following examples should help you understand these capabilities better:

ABASIC1 * Sets the default directory to that of MDOS(usually DSK1) and goes

to the command mode of ABASIC

ABASIC1 Sets the default directory to that of MDOS(usually DSK1) and

attempts to load and run the program LOAD.

ABASIC 128 DSK2.PROG1 Attempts to allocate 128K to DATA space, sets the default

directory to DSK2 and attempts to load and run the program PROG1.

ABASIC1 128 DSK2.* Attempts to allocate 128K to DATA space, set the default

directory to DSK2 and goes to the command mode of ABASIC.

NOTE: It is recommended that ABASIC be started from a batch file.MYARC ADVANCED BASIC

2 2 8

MYARC ADVANCED BASIC

APPENDICES

Appendix A: List of Commands, Statements, and Functions

Appendix B: ASCII Codes

Appendix C: Musical Tone Frequencies

Appendix D: Character Sets

Appendix E: Pattern-Identifier Conversion Table

Appendix F: Color Codes

Appendix G: Mathematical Functions

Appendix H: List of Speech Words

Appendix I: Adding Suffixes to Speech Words

Appendix J: Error Messages

Appendix K: Graphics Modes - Summary

Appendix L: Program - Illustrating MOUSE Commands

Appendix M: Additional Extended ASCII Codes for Keyboard Mode 6

Appendix N: Abasic Assembly Support and other information

Appendix O: Color Palette and hexadecimal charts

Appendix P: RS232 Info and OUTP example

Appendix Q: Disklayout – Floppy

Appendix R: Disklayout – Harddrive MFM Only

229

MYARC Advanced BASIC

APPENDIX A:
COMMANDS, STATEMENTS, AND FUNCTIONS

The following is a list of all MYARC Advanced BASIC commands, statements, and
functions. Commands are listed first; if a command can also be used as a
statement, the letter "S" is listed to the right of the command. Commands
that can be abbreviated have the acceptable abbreviations underlined. Next
is a list of all MYARC Advanced BASIC statements; those that can also be used
as commands have a "C" after them. Finally, there is a list of all MYARC Advanced
BASIC functions.

MYARC Advanced BASIC Commands

BREAK
BYE
CHOIR
CLOSE
CLS
CONTINUE
DELETE
KEY

LIST
LLIST
LPT
LTRACE
MERGE
NEW
NUMBER
OLD

PCM PMD I/O Default

PPT PWD .1 Commands
S RESEQUENCE
S RUN S

SAVE
CALL SPEED
TRACE ON/OFF S
UN BREAK S

MYARC Advanced BASIC Statements

ACCEPT
BEEP
CALL
CALL BCOLOR C
CALL BTIME
CALL CHAR
CALL CHARPAT C
CALL CHARSET C
CALL CIRCLE C
CALL CLEAR
CLOSE
CALL COINC
CALL COLOR
DATA
CALL DATE
CALL DCOLOR C
DEF
DEFvartype
CALL DESPRITE C
DIM
DISPLAY
DISPLAY USING C
CALL DISTANCE C
CALL DRAW
CALL DRAWTO

END
CALL ERR
CALL FILES
CALL FILL
FOR TO
CALL GCHAR
GOSUB
GOTO
CALL GRAPHICS
CALL HCHAR
IF THEN ELSE
IMAGE
CALL INIT
INPUT
INPUT
CALL JOYST
CALL KEY
KILL
LET
CALL LINK
LINPUT
CALL LOAD
CALL LOCATE
CALL MAGNIFY
CALL MARGIN

CALL MEMSET
C CALL MOTION
C MOUSE

NEXT
C ON BREAK
C ON ERROR

ON GOSUB
ON GOTO

C ON WARNING
C OPEN

OPTION BASE
CALL OUT

C CALL PATTERN
CALL PEEK
CALL PEEKV

C CALL POINT
C CALL POKEV
C CALL POSITION
C PRINT
C PRINT USING

RANDOMIZE
C READ
C CALL RECTANGLE
C REM
C RESTO

230

S

S

S
S

C

C

C

C
C
C
C
C
C
C
C
C
C
C

C
C

MYARC ADVANCED BASIC

RETURN STOP C CALL VCHAR C
CALL SAY C SUB CALL VERSION C
CALL SCREEN C SUBEND WEND
CALL SOUND C SUBEXIT WHILE
CALL SPGET C CALL SWAP
CALL SPRITE C CALL TIME C

MYARC Advanced BASIC Functions

ABS HEX$ SEG$
ASC LEFT$ SGN
ATN LEN SIN
CDBL LOG SIR
CHR$ MAX STR$
CINT MIN TAB
COS MOD TAN
CREAL PI TERMCHAR
CSING POS TIME$
DATE$ REC VAL
EOF RND VALHEX
EXP RIGHT$
FREESPACE RPT$
INT

231

MYARC Advanced BASIC

APPENDIX B

ASCII CODES

The following predefined characters may be printed or displayed on the screen.

ASCII ASCII
CODE CHARACTER CODE

30 (cursor) 63 ? (question mark)
31 (space) 64 @ (at sign)
32 (space) 65 A
33 ! (exclamation point) 66 B
34 " (quote) 67 C
35 # (number or pound sign) 68 D
36 $ (dollar) 69 E
37 % (percent) 70 F
38 & (ampersand) 71 G
39 ' (apostrophe) 72 H
40 ((open parenthesis) 73 I
41) (close parenthesis) 74 J
42 * (asterisk) 75 K
43 + (plus) 76 L
44 , (comma) 77 M

45 - (minus) 78 N
46 . (period) 79 0
47 / (slash) 80 P
48 0 81 Q
49 1 82 R
50 2 83 S
51 3 84 T
52 4 85 U

53 5 86 V
54 6 87 W
55 7 88 X

56 8 89 Y
57 9 90 Z

58 : (colon) 91 [(open bracket)
59 ; (semicolon) 92 \ (reverse slant)
60 < (less than) 93] (close bracket)
61 = (equals) 94 (exponentiation)
62 > (greater than) 95 _ (underline)

232

MYARC ADVANCED BASIC

ASCII Codes (continued)

 96 ' (accent
grave)
 97 a
98
99
100
101
102
103
104
105
106
107
108 1
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123 { (left brace)
124 (vertical bar)

125 1 (right brace)
126 - (tilde)
127 DEL (appears as a blank)

When key unit = 3 or = 5, the following key presses
may also be detected by CALL KEY.

Alt 7 (AID) 3 Alt 1 (DEL)
Alt 2 (INS) 6 Alt 8 (REDO)
Alt 3 (ERASE) 8 Alt S (LEFT ARROW)
Alt D (RIGHT ARROW) 10 Alt X (DOWN ARROW)
Alt E (UP ARROW) 12 Alt 6 (CMD)
ENTER 14 Alt 5 (BEGIN)
Alt 9 (BACK)

1
4
7
9

11
13
15

233

MYARC Advanced BASIC

APPENDIX C
MUSICAL TONE FREQUENCIES

The following table gives the frequencies (rounded to integers) of four
octaves of the tempered scale (one half step between notes). While

this list
does not represent the entire range of notes that the computer can produce,
it can be helpful for programming music.

FREQUENCY NOTE FREQUENCY NOTE

110 A 440 A (above middle C)
117 A#,Bb 466 A#,Bb
123 8 494 B
131 C (low C) 523 C (high C)
139 C#,Db 554 C#,Db
147 0 587 D
156 D#,Eb 622 D#,Eb
165 E 659 E
175 F 698 F
185 F#,Gb 740 F#,Gb
196 G 784 G
208 G#,Ab 831 G#,Ab
220 A(below middle C) 880 A (above high C)

220 A(above middle C) 880 A (above high C)
223 A#,Bb 932 A#,Bb
247 B 988 B
262 C (middle C) 1047 C
277 C#,Db 1109 C#,Db
294 D 1175 D
311 D#,Eb 1245 D#,Eb
330 E 1319 E
349 F 1397 F
370 F#,Gb 1480 F#,Gb
392 G 1568 G
415 G#,Ab 1661 G#,Ab
440 A(above middle C) 1760 A

234

MYARC ADVANCED BASIC

APPENDIX D
CHARACTER SETS

ASCII CODES SET ASCII CODES SET

29 0-7 13 128-135
30 8-15 14 136-143
31 16-23 15 144-151
0 24-31 16 152-159
1 32-39 17 160-167
2 40-47 18 168-175
3 48-55 19 176-183
4 56-63 20 184-191
5 64-71 21 192-199
6 72-79 22 200-207
7 80-87 23 208-215
8 88-95 24 216-223
9 96-103 25 224-231
10 104-111 26 232-239
11 112-119 27 240-247
12 120-127 28 248-255

APPENDIX E

PATTERN-IDENTIFIER CONVERSION TABLE

BINARY CODE HEXADECIMAL
BLOCK (O=OFF; 1=0N) NOTATION

0000 0
 -3ir 0001 1

X 0010 2
 XX 0011 3

 7- 0100 4
 X X 0101 5

 -IT- 0110 6
 XXX 0111 7

X 1000 8
 X X 1001 9
 TT- 1010 A
 X XX 1011 B
 TX- 1100 C
 XX X 1101 D
 XXX 1110 E
 XXXX 1111 F

235

MYARC Advanced BASIC

APPENDIX F
COLOR CODES

COLOR CODE COLOR CODE

Transparent 1 Medium Red 9
Black 2 Light Red 10
Medium Green 3 Dark Yellow 11
Light Green 4 Light Yellow 12
Dark Blue 5 Dark Green 13
Light Blue 6 Magenta 14
Dark Red 7 Gray 15
Cyan 8 White 16

APPENDIX G
MATHEMATICAL FUNCTIONS

The following mathematical functions may be defined with DEF as shown.

Function MYARC Extended BASIC II statement

Secant
Cosecant
Cotangent
Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Cotangent
Hyberbolic Sine
Hyberbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant
Hyperbolic Cotangent
Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent

DEF SEC(X)=1/COS(X)
DEF CSC(X)=1/SIN(X)
DEF COT(X)=1/TAN(X)
DEF ARCSIN(X)=ATN(S/SQR(1/X*X))
DEF ARCCOS(X)=ATN(X/SQR(1/X*X))+PI/2
DEF ARCSEC(X)=ATN(SQR(X*X/1))+(SGN(X)/1)*PI/2
DEF ARCCSC(X)=ATN(1/SQR(X*X/1))+(SGN(X)-1)*PI/2
DEF ARCCOT(X)=PI/2-ATN(X) or =PI/2+ATN(-X)
DEF SINH(X)=(EXP(X)-EXP(-X))/2
DEF COSH(X)=(EXP(X)+EXP(-X))/2
DEF TANH(X)=2*EXP(-X)/(EXP(X)+EXP(-X))+1
DEF SECH=2/(EXP(X)+EXP(-X))
DEF CSCH=2/(EXP(X)-EXP(-X))
DEF COTH(X)=2*EXP(-X)/(EXP(X)-EXP(-X))+1
DEF ARCSINH(X)=LOG(X+SQR(X*X+1))
DEF ARCCOSH(X)=LOG(X+SQR(X*X-1))
DEF ARCTANH(X)=LOG((1+X)/(1-X))/2
DEF ARCSECH(X)=LOG((1+SQR(1-X*X))/X)
DEF ARCCSCH(X)=LOGUSGN(X)*SQR(X*X+1)+1)/X)
DEF ARCCOTH(X)=LOG((X+1)/(X-1))/2

236

MYARC ADVANCED BASIC

APPENDIX H
LIST OF SPEECH WORDS

The following is a list of all the letters, numbers, words, and phrases
that can be accessed with CALL SAY and CALL SPGET. See Appendix M for
instructions on adding suffixes to anything in this list.

/ (NEGATIVE) CENTER F
+ (POSITIVE) CHECK FIFTEEN
0 CLEAR FIGURE
1 COLOR FIND
2 COME FINE
3 COMES FINISH
4 COMMA FINISHED
5 COMMAND FIRST
6 COMPLETE FIT
7 COMPLETED FIVE
8 COMPUTER FOR
9 CONNECTED FORTY
A (a) CONSOLE FOUR
Al () CORRECT FOURTEEN
ABOUT COURSE FOURTH
AFTER CYAN FROM
AGAIN 0 FRONT
ALL DATA G
AM DECIDE GAMES
AN DEVICE GET
AND DID GETTING
ANSWER DIFFERENT GIVE
ANY DISKETTE GIVES
ARE DO GO
AS DOES GOES
ASSUME DOING GOING
AT DONE GOOD
B DOUBLE GOOD WORK
BACK DOWN GOODBYE
BASE DRAW GOT
BE DRAWING GRAY
BETWEEN E GREEN
BLACK EACH GUESS
BLUE EIGHT H
BOTH EIGHTY HAD
BOTTOM ELEVEN HAND
BUT ELSE HANDHELD UNIT
BUY END HAS
BY ENDS HAVE
BYE ENTER HEAD
C ERROR HEAR
CAN EXACTLY HELLO
CASSETTE EYE HELP

237

MYARC ADVANCED BASIC

List of Speech Words (continued)

HERE MEMORY PRINTER
HIGHER MESSAGE PROBLEM
HIT MESSAGES PROBLEMS
HOME MIDDLE PROGRAM
HOW MIGHT PUT
HUNDRED MODULE PUTTING
HURRY MORE Q
I MOST R
I WIN MOVE RANDOMLY
IF MUST READ (read)
IN N READ1 (red)
INCH NAME READY TO START
INCHES NEAR RECORDER
INSTRUCTION NEED RED
INSTRUCTIONS NEGATIVE REFER
IS NEXT REMEMBER
IT NICE TRY RETURN
J NINE REWIND
JOYSTICK NINETY RIGHT
JUST • NO ROUND
K NOT S
KEY NOW SAID
KEYBOARD NUMBER SAVE
KNOW 0 SAY
L OF SAYS
LARGE OFF SCREEN
LARGER OH SECOND
LARGEST ON SEE
LAST ONE SEES
LEARN ONLY SET
LEFT OR SEVEN
LESS ORDER SEVENTY
LET OTHER SHAPE
LIKE OUT SHAPES
LIKES OVER SHIFT
LINE P SHORT
LOAD PART SHORTER
LONG PARTNER SHOULD
LOOK PARTS SIDE
LOOKS PERIOD SIDES
LOWER PLAY SIX
M PLAYS SIXTY
MADE PLEASE SMALL
MAGENTA POINT SMALLER
MAKE POSITION SMALLEST
ME POSITIVE SO
MEAN PRESS SOME

PRINT SORRY

238

MYARC ADVANCED BASIC

List of Speech Words (continued)

SPACE THIRTEEN WANT
SPACES THIRY WANTS
SPELL THIS WAY
SQUARE THREE WE
START THREW WEIGH
STEP THROUGH WEIGHT
STOP TIME WELL
SUM TO WERE
SUPPOSED TOGETHER WHAT
SUPPOSED TO TONE WHAT WAS THAT
SURE TOO WHEN
T TOP WHERE
TAKE TRY WHICH
TEEN TRY AGAIN WHITE
TELL TURN WHO
TEN TWELVE WHY
TEXAS INSTRUMENTS TWENTY WILL
THAN TWO WITH
THAT TYPE WON
THAT IS INCORRECT U WORD
THAT IS RIGHT UHOH WORDS
THE (the) UNDER WORK
THE1(th) UNDERSTAND WORKING
THEIR UNTIL WRITE
THEN UP X
THERE UPPER Y
THESE USE YELLOW
THEY V YES
THING VARY YET
THINGS VERY YOU
THINK W YOU WIN
THIRD WAIT YOUR

Z
ZERO

239

MYARC Advanced BASIC

APPENDIX I:
ADDING SUFFIXES TO SPEECH WORDS

This appendix describes how to add ING, S, and ED to any word available in
the Solid State SpeechTM resident vocabulary.

The code for a word is first read using SPGET. The code consists of a
number of characters, one of which tells the speech unit the length of the
word. Then, by means of the subprograms listed here, additional codes can
be added to give the sound of a suffix.

Words often have trailing-off data that make the word sound more natural
but prevent the easy addition of suffixes. In order to add suffixes this
trailing-off data must be removed.

The following program allows you to input a word and, by trying different
truncation values, make the suffix sound like a natural part of the word. The
subprograms DEFING (lines 1000 through 1130), DEFS1 (lines 2000 through 2100),
DEFS2 (lines 3000 through 3090), DEFS3 (lines 4000 through 4120), DEFED1 (lines
5000 through 5070), DEFED2 (lines 6000 through 6110), DEFED3 (lines 7000
through 7130), and MENU (lines 10000 through 10120) should be input separately
and saved with the MERGE option. (The subprogram MENU is the same one used in
th illustrative program with SUB.) You may wish to use different line numbers.
Each of these subprograms (except MENU) defines a suffix.

DEFING defines the ING sound. DEFS1 defines the S sound as it occurs at the
end of "cats." DEFS2 defines the S sound as it occurs at the end of "cads."
DEFS3 defines the S sound as it occurs at the end of "wishes." DEFED1 defines
the ED sound as it occurs at the end of "passed." DEFED2 defines the ED sound
as it occurs at the end of "caused." DEFED3 defines the ED sound as it occurs
a the end of "heated."

In running the program, enter a 0 for the truncation value in order to
leave the truncation sequence.

100 REM *******************

110 REM REQUIRES MERGE OF:
120 REM MENU (LINES 10000 THROUGH 10120)
130 REM DEFING (LINES 1000 THROUGH 1130)
140 REM DEFS1 (LINES 2000 THROUGH 2100)
150 REM DEFS2 (LINES 3000 THROUGH 3090)
160 REM DEFS3 (LINES 4000 THROUGH 4120)
170 REM DEFED1 (LINES 5000 THROUGH 5070)
180 REM DEFED2 (LINES 6000 THROUGH 6110)
190 REM DEFED3 (LINES 7000 THROUGH 7130)

240

MYARC ADVANCED BASIC

Adding Suffixes to Speech Words (continued)

200 REM *******************

210 CALL CLEAR
220 PRINT "THIS PROGRAM IS USED TO"
230 PRINT "FIND THE PROPER TRUNCATION"
240 PRINT "VALUE FOR ADDING SUFFIXES"
250 PRINT "TO SPEECH WORDS.": :
260 FOR DELAY=1 TO 300::NEXT DELAY
270 PRINT "CHOOSE WHICH SUFFIX YOU"
280 PRINT "WISH TO ADD.":
290 FOR DELAY=1 TO 800::NEXT DELAY
300 CALL MENU(8,CHOICE)
310 DATA 'ING','S' AS IN CATS,'S' AS IN CADS,'S' AS IN WISHES,

'ED' AS IN PASSED,'ED' AS IN CAUSED,'ED' AS IN HEATED, END
320 IF CHOICE=O OR CHOICE=8 THEN STOP
330 INPUT "WHAT IS THE WORD? ":WORD$
340 ON CHOICE GOTO 350,379,390,410,430,450,470
350 CALL DEFING(D$)
360 GOTO 480
370 CALL DEFS1(D$)!CATS
380 GOTO 480
390 CALL DEFS2(D$)!CADS
400 GOTO 480
410 CALL DEFS3(D$)!WISHES
420 GOTO 480
430 CALL DEFED1(DWPASSED
440 GOTO 480
450 CALL DEFED2(0$)!CAUSED
460 GOTO 480
470 CALL DEFED3(D$)!HEATED
480 REM TRY VALUES
490 CALL CLEAR
500 INPUT "TRUNCATE HOW MANY BYTES?":L
510 IF L=0 THEN 300
520 CALL SPGET(WORDS$,B$)
530 L=LEN(B$)-L-3
540 C$=SEG$(B$1,2)&CHR$(L)&SEG$(B$,4,L)
550 CALL SAY(,C$&D$)
560 GOTO 500

241

MYARC Advanced BASIC

Adding Suffixes to Speech Words (continued)

The data has been given in short DATA statements to make it as easy as possible
to input. The data statements may be consolidated to make the program
shorter.

1000 SUB DEFING(A$)
1010 DATA 96,0,52,174,30,65
1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50
1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77
1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010
1110 A$=""
1120 FOR I=1 TO 55::READ A::A$=A$&CHR$(A)::NEXT I
1130 SUBEND

2000 SUB DEFS1(A$)!CATS
2010 DATA 96,0,26
2020 DATA 14,56,130,204,0
2030 DATA 223,177,26,224,103
2040 DATA 85,3,252,106,106
2050 DATA 128,95,44,4,240
2060 DATA 35,11,2,126,16,121
2070 RESTORE 2010
2080 A$=""
2090 FOR I=1 TO 29::READ A::A$&CHR$(A)::NEXT I
2100 SUBEND

3000 SUB DEFS2(AWCADS
3010 DATA 96,0,17
3020 DATA 161,253,158,217
3030 DATA 168,213,198,86,0
3040 DATA 223,153,75,128,0
3050 DATA 95,139,62
3060 RESTORE 3010
3070 A$=""
3080 FOR I=1 TO 20::READ A::A$=A$&CHR$(A)::NEXT I
3090 SUBEND

242

MYARC ADVANCED BASIC

Adding Suffixes to Speech Words (continued)

4000 SUB DEFS3(AWWISHES
4010 DATA 96,0,34
4020 DATA 173,233,33,84,12
4030 DATA 242,205,166,55,173
4040 DATA 93,222,68,197,188
4050 DATA 134,238,123,102
4060 DATA 163,86,27,59,1,124
4070 DATA 103,46,1,2,124,45
4080 DATA 138,129,7
4090 RESTORE 4010
4100 A$=""
4110 FOR I=1 TO 37::READ A::A$=A$&CHR$(A)::NEXT I
4120 SUBEND

5000 SUB DEFED1(A$)!PASSED
5010 DATA 96,0,10
5020 DATA 0,224,128,37
5030 DATA 204,37,240,0,0
5040 RESTORE 5010
5050 A$=""
5060 FOR I=1 TO 13::READ A::A$=A$&CHRS(A)::NEXT I
5070 SUBEND

6000 SUB DEFED2(A$)!CAUSED
6010 DATA 96,0,26
6020 DATA 172,163,214,59,35
6030 DATA 109,170,174,68,21
6040 DATA 22,201,220,250,24
6050 DATA 69,148,162,166,234
6060 DATA 75,84,97,145,204
6070 DATA 15
6080 RESTORE 6010
6090 A$=""
6100 FOR I=1 TO 29::READ A::A$=WCHR$(A)::NEXT I
6110 SUBEND

243

MYARC Advanced BASIC

Adding Suffixes to Speech Words (continued)

7000 SUB DEFED3(A$)!HEATED
7010 DATA 96,0,36
7020 DATA 173,233,33,84,12
7030 DATA 242,205,166,183
7040 DATA 172,163,214,59,35
7050 DATA 109,170,174,68,21
7060 DATA 22,201,92,250,24
7070 DATA 69,148,162,38,235
7080 DATA 75,84,97,145,204
7090 DATA 178,127
7100 DATA 7010
7110 A$=""
7120 FOR 1=1 TO 39::READ A::A$=A$&CHR$(A)::NEXT I
7130 SUBEND

10000 SUB MENU(COUNT,CHOICE)
10010 CALL CLEAR
10020 IF COUNT>22 THEN PRINT "TOO MANY ITEMS" :: CHOICE=0 :: SUBEXIT
10030 RESTORE
10040 FOR 1=1 TO COUNT
10050 READ TEMP$
10060 TEMP$=SEG$(TEMP$,1,25)
10070 DISPLAY AT (I,1):I;TEMP$
10080 NEXT I
10090 DISPLAY AT(I+1,1):"YOUR CHOICE: 1"
10100 ACCEPT AT(I+1,14)BEEP VALIDATE(DIGIT)SIZE(-2):CHOICE
10110 IF CHOICE<1 OR CHOICE>COUNT THEN 10100
10120 SUBEND

244

MYARC ADVANCED BASIC

Adding Suffixes to Speech Words (continued)

You can use the subprograms in any program once you have determined the
number of bytes to truncate. The following program uses the subprogram
DEFING in lines 1000 through 1130 to have the computer say the word
DRAWING using DRAW plus the suffix ING. Note that it was found that DRAW
should be truncated by 41 characters to produce the most natural sounding
DRAWING. The subprogram DEFING in lines 1000 through 1130 is the program
you saved with the MERGE option.

100 CALL DEFING(ING$)
110 CALL SPGET("DRAW",DRAWS$)
120 L=LEN(DRAW$)-3-41! 3 BYTES OF SPEECH OVERHEAD, 41 BYTES TRUNCATED
130 DRAW$=SEG$(DRAW$,1,2)&CHR$(L)&SEG$(DRAW$,4,L)
140 CALL SAY("WE ARE",DRAW$UNGWA1 SCREEN")
150 GOTO 140
1000 SUB DEFING(A$)
1010 DATA 96,0,52,174,30,65
1020 DATA 21,186,90,247,122,214
1030 DATA 179,95,77,13,202,50
1040 DATA 153,120,117,57,40,248
1050 DATA 133,173,209,25,39,85
1060 DATA 225,54,75,167,29,77
1070 DATA 105,91,44,157,118,180
1080 DATA 169,97,161,117,218,25
1090 DATA 119,184,227,222,249,238,1
1100 RESTORE 1010
1110 A$=""
1120 FOR I=1 TO 55::READ A::A$=A$&CHR$(A)::NEXT I
1130 SUBEND
(Press SHIFT C to stop the program.)

245

MYARC Advanced BASIC

APPENDIX J:
ERROR MESSAGES

The following lists all the error messages that MYARC Advanced BASIC
gives. The first list is alphabetical by the message that is given, and
the second list is numeric by the number of the error that is returned
by CALL ERR. If the error occurs in the execution of a program, the error
message is often followed by IN line-number.

Sorted by Message

Message Descriptions of Possible Errors

74 BAD ARGUMENT
 Bad value given in ASC, ATN, COS, EXP, INT,

LOG, SIN, SOUND, SQR, TAN, or VAL.
 An array element specified in a SUB statement.
 Bad first parameter or too many parameters in

LINK. 61 BAD LINE NUMBER
 Line number less than 1 or greater than 32767.
 Omitted line number.
 Line number outside the range 1 through 32767

produced by RES.
57 BAD SUBSCRIPT

79 BAD VALUE

 Use of too large or small subscript in an array.
 Incorrect subscript in DIM.

 Incorrect value given in AND, CHAR, CHR$, CLOSE,
EOF, FOR, GOSUB, GOTO, HCHAR, INPUT, MOTION, NOT,
OR, POS, PRINT, PRINT USING, REC, RESTORE, RPT$,
SEG$, SIZE, VCHAR, or XOR.

 Array subscript value greater than 32767.
 File number greater than 255 or less than zero.
 More than three tones and one noise generator
specified in SOUND.

 A value passed to a subprogram is not acceptable in
the subprogram. For example, a sprite velocity
value less than -128 or a character value greater
than 143.

 Value in ON...GOTO or ON...GOSUB greater than the
number of lines given.

 Incorrect position given after the AT clause in
ACCEPT or DISPLAY.

67 CAN'T CONTINUE
 Program has been edited after being stopped

by a breakpoint.
 Program was not stopped by a breakpoint.

69 COMMAND ILLEGAL IN PROGRAM
 BYE, CON, LIST, MERGE, NEW, NUM, OLD, RES, or SAVE

used in a program.
84 DATA ERROR

 READ or RESTORE with data not present or with a

246

MYARC ADVANCED BASIC

string where a number value is expected.
 Line number after RESTORE is higher than
the highest line number in the program.

 Error in object file in LOAD.
109 FILE ERROR

 Wrong type of data read with a READ statement.
 Attempt to use CLOSE, EOF, INPUT, OPEN, PRINT,
PRINT USING, REC, or RESTORE with a file that
does not exist or does not have the proper
attributes.

 Not enough memory to use a file.
44 FOR-NEXT NESTING

 The FOR and NEXT statements of loops do not
align properly.

 Missing NEXT statement.
130 I/O ERROR

 An error was detected in trying to execute CLOSE,
DELETE, LOAD, MERGE, OLD, OPEN, RUN, or SAVE.

 Not enough memory to list a program.
16 ILLEGAL AFTER SUBPROGRAM

 Anything but END, REM, or SUB after a
SUBEND. 36 IMAGE ERROR

 An error was detected in the use of DISPLAY
USING, IMAGE, or PRINT USING.

 More than 10 (E-format) or 14 (numeric format)
significant digits in the format string.

 IMAGE string is longer than 254 characters.
28 IMPROPERLY USED NAME

 An illegal variable name was used in CALL,
DEF, or DIM.

 Using a MYARC Advanced BASIC reserved word in LET.
 Using a subscripted variable or a string variable in
a FOR.

 Using an array with the wrong number of
dimensions.

 Using a variable name differently than originally
assigned.
A variable can be only an array, a numeric or
string variable, or a user defined function name.

 Dimensioning an array twice.
 Putting a user defined function name on the left
of the equals sign in an assignment statement.

 Using the same variable twice in the parameter
list of a SUB statement.

81 INCORRECT ARGUMENT LIST
 CALL and SUB mismatch of arguments.

83 INPUT ERROR
 An error was detected in an INPUT.

60 LINE NOT FOUND
 Incorrect line number found in BREAK, GOSUB,
GOTO, ON ERROR, RUN, or UNBREAK, or after THEN
or ELSE.

 Line to be edited not found.

247

MYARC Advanced BASIC

62 LINE TOO LONG
 Line too long to be entered into a program.

39 MEMORY FULL
 Program too large to execute one of the
following: DEF, DELETE, DIM, GOSUB, LET, LOAD,
ON...GOSUB, OPEN, or SUB.

 Program too large to add a new line, insert a
line, replace a line, or evaluate an expression.

49 MISSING SUBEND
 SUBEND missing in a subprogram.

47 MUST BE IN SUBPROGRAM
 SUBEND or SUBEXIT not in a subprogram.

19 NAME TOO LONG
 More than 15 characters in variable or subprogram
name.

43 NEXT WITHOUT FOR
 FOR statement missing, NEXT before FOR,
incorrect FOR-NEXT nesting, or branching into a
FOR-NEXT loop. 78 NO PROGRAM PRESENT
 No program present when issuing a LIST, RESEQUENCE,
RESTORE, RUN, or SAVE command.

10 NUMERIC OVERFLOW
 A number too large or too small resulting from
a *,+,-,/ operation or in ACCEPT, ATN, COS, EXP,
INPUT, INT, LOG, SIN, SQR, TAN, or VAL.

 A number outside the range -32768 to 32767 in
PEEK or LOAD.

70 ONLY LEGAL IN A PROGRAM
 One of the following statements was used as a
command: DEF, GOSUB, GOTO, IF, IMAGE, INPUT,
ON BREAK, ON ERROR, ON...GOSUB, ON...GOTO,
ON WARNING, OPTION BASE, RETURN, SUB, SUBEND,or
SUBEXIT.

25 OPTION BASE ERROR
 OPTION BASE executed more than once, or with a
value other than 1 or zero.

97 PROTECTION VIOLATION
 Attempt to save, list, or edit a protected
program.

48 RECURSIVE SUBPROGRAM CALL
 Subprogram calls itself, directly or indirectly.

51 RETURN WITHOUT GOSUB
 RETURN without GOSUB or an error handled by the
previous execution of an ON ERROR statement.

56 SPEECH STRING TOO LONG
 Speech string returned by SPGET is longer than
255 characters.

40 STACK OVERFLOW
 Too many sets of parentheses.
 Not enough memory to evaluate an expression or
assign a value.

248

MYARC ADVANCED BASIC

54 STRING TRUNCATED
 A string created by RPT$, concatenation
("&" operator), or a user defined function
is longer than 255 characters.

 The length of a string expression in the VALIDATE
clause is greater than 254 characters.

24 STRING-NUMBER MISMATCH
 A string was given where a number was expected or
vice versa in a MYARC Advanced BASIC supplied
function or subprogram.

 Assigning a string value to a numeric value or
vice versa.

 Attempting to concatenate ("&" operator) a
number.

 Using a string as a subscript.
135 SUBPROGRAM NOT FOUND

 A subprogram called does not exist or an assembly
language subprogram named in LINK has not been
loaded.

14 SYNTAX ERROR
 An error such as a missing or extra comma or
parenthesis, parameters in the wrong order,
missing parameters, missing keyword , misspelled
keyword, keyword in the wrong order, or the like
was detected in a MYARC Advanced BASIC command,
statement, function, or subprogram.

 DATA or IMAGE not first and only statement on
a line.

 Items after final ")".
 Misssing "#" in SPRITE.
 Missing ENTER, tail comment symbol (!), or
statement separator symbol (::).

 Missing THEN after IF.
 Missing TO after FOR.
 Nothing after CALL, SUB, FOR, THEN, or ELSE.
 Two E's in a numeric constant.
 Wrong parameter list in a MYARC Advanced
BASIC supplied subprogram.

 Going into or out of a subprogram with
GOTO, GOSUB, ON ERROR, etc.

 Calling INIT without the Memory Expansion
peripheral attached.

 Calling LINK or LOAD without first calling INIT.
 Using a constant where a variable is required.
 More than seven dimensions in an

array. 17 UNMATCHED QUOTES
 Odd number of quotes in an input

line. 20 UNRECOGNIZED CHARACTER
 An unrecognized character such as ? or % is not
in a quoted string.

 A bad field in an object file accessed by LOAD.

249

MYARC Advanced BASIC

Additional Error Messages
Sorted by #

 # Message

 35 SYMBOL NOT FOUND
 63 STRING FORMAT ERROR
 64 ERROR BASIC OS
 65 MOUSE MODE ERROR
 99 INVALID ERROR NUMBER
 101 INTEGER OVERFLOW
 102 INVALID FILENAME
 103 ARGUMENT NOT NUMERIC
 104 MISSING ARGUMENT
 105 TOO MANY ARGUMENTS
 106 STRING TOO LONG
 107 GRAPHICS MODE ERROR
 108 WINDOW TOO SMALL
 111 MEMORY OVERFLOW
 112 CHECKSUM ERROR
 113 DUPLICATE DEF
 114 ILLEGAL TAG
 115 UNRESOLVED REFERENCE
 116 NAME NOT IN TABLE
 117 INDEX OUT OF RANGE

These messages are added to syntax or bad value error messages if appropriate.

 MISSING COMMA
 MISSING LEFT PAREN
 MISSING RIGHT PAREN
 LINETYPE(see Draw, Rect)
 PIXEL ROW or PIXEL COL

GRAPHIC MODES Vs XOP6 VIDEO MODES Vs V9938 MODES

 GRAPHICS XOP6 VIDEO V9938
 MODE MODE MODE

 1,1 2/3 Multicolor/Graphic 1
 1,2 4 Graphic 2
 1,3 5 Graphic 3
 2,1 0 Text 1
 2,2 6 Graphic 4
 2,3 9 Graphic 7
 3,1 A Text 2-26 lines
 3,2 7 Graphic 5
 3,3 8 Graphic 6
 4 1 Text 2-24 lines

Graphics Mode 4, a new Graphics mode is basically the same as Mode 3,1.

250

MYARC ADVANCED BASIC

APPENDIX K

GRAPHICS MODES - Summary

GRAPHICS
MODE

SCREEN
DIMEN.

SCREE
N
SIZE

DEFAULT
MARGINS

MODE
NAME

NO.OF
PATNS
.

COLORS
PER

SCREEN

PATTERN
SIZE

SPRIT
E
MODE

MEMORY
/
SCREEN

1,1 256,19
2

32x24 3,30
1,24

Pattern
Graphicl

256 16 8 x 8 1
4/line

4K/scr
32 pgs

1,2 256,19
2

32x24 3,30
1,24

Graphic
2

768 16 8 x 8 1
4/line

16K/sc
r 8
pgs

1,3 256,19
2

32x24 3,30
1,24

Graphic
3

768 16 8 x 8 2
8/line

16K/sc
r 8
pgs

2,1 256,19
2

40x24 1,40
1,24

Text- 1 256 2 6 x 8 None 4K/scr
3 pgs

2,2 256x21
2

40x26 1,40
1,24

Bitmap-
1

??? 16 6 x 8 2
8/line

32K/scr
4 pgs

2,3 256,21
2

40x26 1,40
1,24

Bitmap-
4

??? 256 6 x 8 2
8/line

64K/sc
r 2
pgs

3,1 512,21
2

80x26 1,80
1,24

Text- 2 256 2+2 6 x 8 None 8K/scr
16 pgs

3,2 512x21
2

80x26 1,80
1,24

Bitmap-
2

??? 4 6 x 8 2
8/line

32K/scr
4 pgs

3,3 512x21
2

80x26 1,80
1,24

Bitmap-
3

??? 16 6 x 8 2
8/line

64K/sc
r 2
pgs

251

MYARC Advanced BASIC

APPENDIX L

PROGRAM - ILLUSTRATING MOUSE COMMANDS

The following program illustrates the use of several MOUSE Commands to
draw lines on the screen. Press MOUSE button 1 to start drawing a line
and hold it down until you are done drawing.

100 CALL GRAPHICS(2,3) :: REM 256 COLOR BIT MAPPED MODE
110 CALL SPRITE(#1,33,16,1,1) :: REM DEFINE MOUSE AS !
120 CALL SEEMOUSE :: REM MAKE SURE MOUSE IS VISIBLE ON SCREEN
130 CALL MOUSE(Y,1) :: REM TEST FOR BUTTON PRESS
140 IF Y=0 THEN 130 :: REM WAIT FOR A BUTTON PRESS
150 CALL MOUSEDRAG(ON) :: REM BUTTON PRESSED SO START DRAWING
160 CALL MOUSE(Y,1) :: REM TEST BUTTON STATUS
170 IF Y=1 THEN 160 :: REM DRAW UNTIL RELEASED
180 CALL MOUSEDRAG(OFF) :: REM STOP DRAWING WHEN RELEASED
190 GO TO 130 :: REM GO TO WAIT FOR NEXT BUTTON PRESS

252

MYARC ADVANCED BASIC

APPENDIX M

ADDITIONAL EXTENDED ASCII CODES FOR KEYBOARD MODE 6

In addition to the normal ASCII codes returned in keyboard mode 5, the
following additional Extended Codes are also returned in keyboard mode 6:

EXTENDED CODE(HEX) FUNCTION

3 NUL Character
F Back Arrow
10-19 ALT Q,W,E,R,T,Y,U,I,O,P
1E-26 ALT A,S,D,F,G,H,J,K,L
2C-32 ALT Z,X,C,V,B,N,M
3B-44 F1-F10 Function Keys (Base Case)
47 Home
48 Up Arrow
49 Page Up
4B Left Arrow
4D Right Arrow
4F End
50 Down Arrow
51 Page Down
52 INS
53 DEL
54-5D F11-F20 (Upper Case F1-F10)
5E-67 F21-F30 (CTRL F1-F10)
68-71 F31-F40 (ALT F1-F10)
72 CTRL PRTSC(Start/Stop Echo to Printer)
73 CTRL Right Arrow (Reverse Word)
74 CTRL Left Arrow (Advance Word)
75 CTRL END (Erase to End of Line)
76 CTRL PG DN (Erase to End of Screen)
77 CTRL HOME (Clear Screen and Home)
78-83 ALT 1,2,3,4,5,6,7,8,9,0,-,=
84 CTRL PG UP (Top 25 Lines of Text and

Home Cursor)

- continue on next page -

253

MYARC Advanced BASIC
 <MODE> <MODE>

|KEY| 0 1 2 3 4 5 |KEY| 0 1 2 3 4 5

|vvvvvvKEYvvvvv| 0 1 2 3 4 5 |vvvvvvKEYvvvvv| 0 1 2 3 4 5

 --- ~ --- 96 - - 96 96 96 SHIFT 58 - - 58 58 58

SHIFT 126 - - 126 126 126 --- ' --- 39 - - 39 39 39

 --- 1 --- 49 19 - 49 49 49 SHIFT 34 - - 34 34 34

CTRL 177 - - 177 177 177 --- , --- 44 - 14 44 44 44

FCTN 3 - - 3 131 3 CTRL 128 - - 128 0 128

SHIFT 33 - - 33 33 33 FCTN 184 - - 184 184 184

 --- 2 --- 50 7 - 50 50 50 SHIFT 60 - - 60 60 60

CTRL 178 - - 178 178 178 --- . --- 46 - 13 46 46 46

FCTN 4 - - 4 132 4 CTRL 155 - - 155 27 155

SHIFT 64 - - 64 64 64 FCTN 185 - - 185 185 185

 --- 3 --- 51 8 - 51 51 51 SHIFT 62 - - 62 62 62

CTRL 179 - - 179 179 179 --- / --- 47 - 16 47 47 47

FCTN 7 - - 7 135 7 CTRL 187 - - 187 187 187

SHIFT 35 - - 35 35 35 SHIFT 63 - - 63 63 63

 --- 4 --- 52 9 - 52 52 52 --- A --- 65 1 - 65 65 65

CTRL 180 - - 180 180 180 CTRL 129 - - 129 1 129

FCTN 2 - - 2 130 2 FCTN 124 - - 124 124 124

SHIFT 36 - - 36 36 36 --- B --- 66 16 - 66 66 66

 --- 5 --- 53 10 - 53 53 53 CTRL 130 - - 130 2 130

CTRL 181 - - 181 181 181 FCTN 190 - - 190 190 190

FCTN 14 - - 14 142 14 --- C --- 67 14 - 67 67 67

SHIFT 37 - - 37 37 37 CTRL 131 - - 131 3 131

 --- 6 --- 54 - 19 54 54 54 FCTN 96 - - 96 96 96

CTRL 182 - - 182 182 182 --- D --- 68 3 - 68 68 68

FCTN 12 - - 12 140 12 CTRL 132 - - 132 4 132

SHIFT 94 - - 94 94 94 FCTN 9 - - 9 137 9

 --- 7 --- 55 - 7 55 55 55 --- E --- 69 5 - 69 69 69

CTRL 183 - - 183 183 183 CTRL 133 - - 133 5 133

FCTN 1 - - 1 129 1 FCTN 11 - - 11 139 11

SHIFT 38 - - 38 38 38 --- F --- 70 12 - 70 70 70

 --- 8 --- 56 - 8 56 56 56 CTRL 134 - - 134 6 134

CTRL 158 - - 158 30 158 FCTN 123 - - 123 123 123

FCTN 6 - - 6 134 6 --- G --- 71 17 - 71 71 71

SHIFT 42 - - 42 42 42 CTRL 135 - - 135 7 135

 --- 9 --- 57 - 9 57 57 57 FCTN 125 - - 125 125 125

CTRL 159 - - 159 31 159 --- H --- 72 - 1 72 72 72

FCTN 15 - - 15 143 15 CTRL 136 - - 136 8 136

SHIFT 40 - - 40 40 40 FCTN 191 - - 191 191 191

 --- 0 --- 48 - 10 48 48 48 --- I --- 73 - 5 73 73 73

CTRL 176 - - 176 176 176 CTRL 137 - - 137 9 137

FCTN 188 - - 188 188 188 FCTN 63 - - 63 63 63

SHIFT 41 - - 41 41 41 --- J --- 74 - 2 74 74 74

 --- - --- 45 - - 45 45 45 CTRL 138 - - 138 10 138

SHIFT 95 - - 95 95 95 FCTN 192 - - 192 192 192

 --- = --- 61 - - 61 61 61 --- K --- 75 - 3 75 75 75

CTRL 157 - - 157 29 157 CTRL 139 - - 139 11 139

FCTN 5 - - 5 133 5 FCTN 193 - - 193 193 193

SHIFT 43 - - 43 43 43 --- L --- 76 - 12 76 76 76

 --- [--- 91 - 16 91 91 91 CTRL 140 - - 140 12 140

SHIFT 123 - - 123 123 123 FCTN 194 - - 194 194 194

 ---] --- 93 - - 93 93 93 --- M --- 77 - 0 77 77 77

SHIFT 125 - - 125 125 125 CTRL 141 - - 141 13 141

 --- \ --- 92 - - 92 92 92 FCTN 195 - - 195 195 195

SHIFT 124 - - 124 124 124 --- N --- 78 - 15 78 78 78

 --- ; --- 59 - 17 59 59 59 CTRL 142 - - 142 14 142

CTRL 156 - - 156 28 156 FCTN 196 - - 196 196 196

FCTN 189 - - 189 189 189 --- O --- 79 - 6 79 79 79

254

Appendix M (Cont.)

 <MODE> <MODE>

|KEY| 0 1 2 3 4 5 |KEY| 0 1 2 3 4 5

CTRL 143 - - 143 15 143 m 109 A A 77 109 109

FCTN 39 - - 39 39 39 n 110 S S 78 110 110

 --- P --- 80 - 11 80 80 80 o 111 - - 79 111 111

CTRL 144 - - 144 16 144 p 112 C C 80 112 112

FCTN 34 - - 34 34 34 q 113 A A 81 113 113

 --- Q --- 81 18 - 81 81 81 r 114 P P 82 114 114

CTRL 145 - - 145 17 145 s 115 S S 83 115 115

FCTN 197 - - 197 197 197 t 116 | | 84 116 116

 --- R --- 82 6 - 82 82 82 u 117 | | 85 117 117

CTRL 146 - - 146 18 146 v 118 | | 86 118 118

FCTN 91 - - 91 91 91 w 119 | | 87 119 119

 --- S --- 83 2 - 83 83 83 x 120 | | 88 120 120

CTRL 147 - - 147 19 147 y 121 | | 89 121 121

FCTN 8 - - 8 136 8 z 122 | | 90 122 122

 --- T --- 84 11 - 84 84 84 BACKSPACE 8 - - 8 136 8

CTRL 148 - - 148 20 148 INSERT 4 - - 4 132 4

FCTN 93 - - 93 93 93 HOME - 18 - - - -

 --- U --- 85 - 4 85 85 85 PAGE UP 12 - - 12 140 12

CTRL 149 - - 149 21 149 TAB 137 - - 137 9 137

FCTN 95 - - 95 95 95 DELETE 3 - - 3 131 3

 --- V --- 86 13 - 86 86 86 PAGE DOWN 2 - - 2 130 2

CTRL 150 - - 150 22 150 ESC 155 - - 155 27 155

FCTN 127 - - - 127 127 UP ARROW 11 5 - 11 139 11

 --- W --- 87 4 - 87 87 87 DOWN ARROW 10 0 - 10 138 10

CTRL 151 - - 151 23 151 LEFT ARROW 8 2 - 8 136 8

FCTN 126 - - 126 126 126 RIGHT ARROW 9 3 - 9 137 9

 --- X --- 88 0 - 88 88 88 F1 SL ON 226 - - 226 226 226

CTRL 152 - - 152 24 152 F1 SL OFF 3 - - 3 131 3

FCTN 10 - - 10 138 10 F2 SL ON 227 - - 227 227 227

 --- Y --- 89 - 18 89 89 89 F2 SL OFF 4 - - 4 132 4

CTRL 153 - - 153 25 153 F3 SL ON 228 - - 228 228 228

FCTN 198 - - 198 198 198 F3 SL OFF 7 - - 7 135 7

 --- Z --- 90 15 - 90 90 90 F4 SL ON 229 - - 229 229 229

CTRL 154 - - 154 26 154 F4 SL OFF 2 - - 2 130 2

FCTN 92 - - 92 92 92 F5 SL ON 230 - - 230 230 230

SPACE 32 - - 32 32 32 F5 SL OFF 14 - - 14 142 14

ENTER 13 - - 13 13 13 F6 SL ON 231 - - 231 231 231

a 97 | | 65 97 97 F6 SL OFF 12 - - 12 140 12

b 98 | | 66 98 98 F7 SL ON 232 - - 232 232 232

c 99 | | 67 99 99 F7 SL OFF 1 - - 1 129 1

d 100 | | 68 100 100 F8 SL ON 233 - - 233 233 233

e 101 | | 69 101 101 F8 SL OFF 6 - - 6 134 6

f 102 | | 70 102 102 F9 SL ON 234 - - 234 234 234

g 103 | | 71 103 103 F9 SL OFF 15 - - 15 143 15

h 104 S S 72 104 104 F10 SL ON 235 - - 235 235 235

i 105 A A 73 105 105 F10 SL OFF 188 - - 188 188 188

j 106 M M 74 106 106 F11 224 - - 224 224 224

k 107 E E 75 107 107 F12 225 - - 225 225 225

l 108 - - 76 108 108

CALL KEY ASCII CHARACTERS

255

Appendix N

ABASIC ASSEMBLY SUPPORT AND OTHER INFORMATION

 UTILITIES INFO XMLLNK DATA VALUES
ADDRESS CONTENTS
>2002 >24F4 (DEFAULT-NO PGM) 6 CNS
>2004 >DF68 (DEFAULT-NO PGM) >20 CIF
>DF60 1st LINK NAME >26 SCROLL
>DF66 1st LINK ADDRESS >0D3A FCOMP
>DF68 SCAN >236C >0D7C FSUB
>DF70 PAD >8300 >0D80 FADD
>DF78 GPLWS >83E0 >0E88 FMUL
>DF80 SOUND >F120 >0FF4 FDIV
>DF88 VDPRD >F100 >11AE CSN
>DF90 VDPSTA >F102 >12B8 CFI
>DF98 VDPWD >F100
>DFA0 VDPWA >F102 UTILITIES NOT SUPPORTED
>DFA8 XMLLNK >2018 COMPCT
>DFB0 KSCAN >201C GETSTR
>DFB8 VSBW >2020 MEMCHK
>DFC0 VMBW >2024 VPUSH
>DFC8 VSBR >2028 VPOP
>DFD0 VMBR >202C ASSGNV
>DFD8 VMTR >2030 VGWITE
>DFE0 NUMASG >2008 GVWITE
>DFE8 NUMREF >200C
>DFF0 STRASG >2010
>DFF8 STRREF >2014

RORG programs start loading at address >24F4 thru >DF67(minus 8 bytes for each
"LINK" name and address)

Utility workspace used by Abasic for assembly programs >2038 to >2098

First free address pointer >2002
Last free address pointer >2004

Abasic memory tables start at >FB00(The pages allocated)
Default I/O pab is at >FC00 (64 bytes)
Abasic FAC and ARG are located at >F3C0 and F3D0

The TI FAC and ARG can be used also. Any program that loaded into those memory
locations would corrupt those memory locations, unless your program provides
memory space for these routines.

No portion of address >F140 to >FE30 can be used to store an assembly language
program, although an assembly language program can use information from these
addresses (i.e. I/O PAB)

The following are the meanings of values returned when a drive is
cataloged(file type):
1 D/F
2 D/V
3 I/F
4 I/V
5 PGM
6 DIR
7 EMU
If these values have a minus sign in front of them it means that the file is
protected.

256

Appendix N (Cont.)

ABASIC ASSEMBLY SUPPORT AND OTHER INFORMATION

DEFAULT I/O PAB DETAIL at >FC00 (64 bytes)

OPCODE EQU 0 I/O OPCODE
MFLAG EQU 1 MODE FLAG
ECODE EQU 2 ERROR CODE
BAHIGH EQU 3 BUF ADD HIGH
BALOW EQU 4 BUF ADD LOW
LRN EQU 6 LOGICAL RECORD NUMBER
RECNUM EQU 6 RECORD NUMBER
LRC EQU 8 LOGICAL RECORD LENGTH
MEMTYP EQU 10 CPU or VDP
CCHIGH EQU 11 CHARACTER COUNT HIGH
CHRCNT EQU 12 CHAR COUNT
STATBY EQU 14 STATUS BYTE(RECORD NUMBER)
NAMEL EQU 15 NAME LENGTH
NAME EQU 16 NAME(40 characters)
IOCONT EQU 56 IO CONTINUE
FILENO EQU 57 BASIC FILE NUMBER
INTOFF EQU 58 POINTER INTO BUFFER
PABBUF EQU 60 32 BIT ADDRESS POINTER
 TO DATA BUFFER

The following combinations of keys produce special effects and are available
to MDOS and/or ABASIC:

ALT CTRL DEL makes the keyboard routine initiate the equivalent of a
system reset/boot(soft boot).

CTRL BREAK (CTRL C) makes the keyboard routine invoke the (Keyboard
break) interrupt.

CTRL NUM-LOCK makes the keyboard routine wait for you to press any key
but NUM-LOCK. This gives you a way to suspend an operation
temporarily, then resume.

SHIFT PRTSC or CTRL PRTSC or PRTSC makes the keyboard routine invoke
the Print Screen interrupt.

The keyboard treats the following keys as a group, rather than
individually; CTRL, SHIFT, NUM- LOCK, CAPS-LOCK and INS. The service
routine for the keyboard I/O routine returns a "shift status" byte
that tells you when one of these keys are pressed.

PRE-SCAN

The following symbols are used by ABASIC for pre-scan:

!@P+ Turn pre-scan on
!@P- Turn pre-scan off
!@P* Terminate pre-scan

If your program uses a large quantity of variables(any kind) it is
recommended that pre-scan be used.

String variables(any kind) should precede numeric variables(any). Memory
space allocated for Strings is less than that of numeric variables and
allows for the most efficient use of Data space(Freespace(2)).

257

Appendix N (Cont.)

ABASIC ASSEMBLY SUPPORT AND OTHER INFORMATION

ABASIC Memory block >F000->FFFF

>F000->F01F User and ABASIC WS Register
>F020->F03F ABASIC WS Register
>F040->F047 Fast move byte routine
>F048->F04F Fast move word routine
>F050->F061 Fast move to/from stack routine
>F062->F07D Fast move memory table page 3 to active page 3
>F080->F0FF ABASIC WS Registers (Many Abasic routines use these

registers i.e.XOP)
>F100->F107 Port read/write (0,1,2,3)
>F108->F10F Port read/write (0,1,2,3)
>F110->F117 Page Map(active pages)
>F120->F12F Sound
>F130->F13F Clock
>F140->FE2F Abasic support data(i.e. i/o pab, buffers, program

storage info). Corruption of this memory block will
cause lockup.

>FE30->FF2F Reserved for ABASIC
>FF30->FFDF Unused block of memory(Debug may use part of this)
>FFE0->FFFF Used by MDOS and DEBUG

Call Peek can be used to get the values from >0000->FFFF memory addresses.
Information at these memory addresses are values based on the visible
memory(active pages).

Call Load can be used to put values in >2000->DFFF memory addresses, but memory
addresses >2000->24F3 contain the Abasic Assembly support routines and other
Abasic routines. (See Utilities info table)

The following are the syntax for STCR and LDCR:

CALL STCR(address,length,input value)
CALL LDCR(address,length,output value)

The following are four new assembly instructions available to the TMS9995:
DIVS (DIVide Signed) MPYS (MultiPlY Signed)

[<label>] DIVS <gas> [<comment>]
[<label>] MPYS <gas> [<comment>]
A destination-operand is not used, because it must always be R0 and R1 of the
user workspace.

Examples
DIVS R2 DIVS *R4+ DIVS @ADDR DIVS @VALUE(R10)
MPYS R3 MPYS *R7+ MPYS @LABEL MPYS @INDEX(R8)

opcodes: DIVS = >0180 Format VI
 MPYS = >01C0 Format VI

LWP (Load Workspace-Pointer from a register)
LST (Load STatus-register)

[<label>] LWP <wa> [<comment>]
[<label>] LST <wa> [<comment>]

opcodes: LWP = >0090 Format VIII
 LST = >0080 Format VIII
Examples LWP R5 LWP R12 LST R13 LST R0

258

APPENDIX O

COLOR CHART DEFAULT PALETTE

COLOR MDOS MYBASIC
 CODE G,R,B CODE R,G,B

TRANSPARENT 0 0,0,0 1 0,0,0
BLACK 1 0,0,0 2 1,1,1
GREEN 2 6,1,1 3 1,7,1
LT GREEN 3 7,3,3 4 3,8,3
DK BLUE 4 1,1,7 5 1,1,8
LT BLUE 5 3,2,7 6 3,4,8
DK RED 6 1,5,1 7 6,1,1
CYAN 7 6,2,7 8 2,7,8
MED RED 8 1,7,1 9 8,1,1
LT RED 9 3,7,3 10 8,3,3
DK YELLOW A 6,6,1 11 7,7,1
LT YELLOW B 6,6,4 12 7,7,4
DK GREEN C 4,1,1 13 1,5,1
MAGENTA D 2,6,5 14 7,2,6
GRAY E 5,5,5 15 6,6,6
WHITE F 7,7,7 16 8,8,8

 HEXDECIMAL TO DECIMAL CHART

5th DIGIT 4th DIGIT 3rd DIGIT 2nd DIGIT 1st DIGIT
HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0 0 0
1 65536 1 4096 1 256 1 16 1 1
2 131072 2 8192 2 512 2 32 2 2
3 96608 3 12288 3 768 3 48 3 3
4 262144 4 16384 4 1024 4 64 4 4
5 327680 5 20480 5 1280 5 80 5 5
6 393216 6 24576 6 1536 6 96 6 6
7 458752 7 28672 7 1792 7 112 7 7
8 524288 8 32768 8 2048 8 128 8 8
9 589824 9 36864 9 2304 9 144 9 9
A 655360 A 40960 A 2560 A 160 A 10
B 720896 B 45056 B 2816 B 176 B 11
C 786432 C 49152 C 3072 C 192 C 12
D 851968 D 53248 D 3328 D 208 D 13
E 917504 E 57344 E 3584 E 224 E 14
F 983040 F 61440 F 3840 F 240 F 15

259

APPENDIX P

RS232 INFO AND OUTP EXAMPLE

RS232 MEMORY MAP FOR MYBASIC ONLY
 C000 - CFFE DSR ROM
 D000 - DFFE PARALLEL I/O

RS232 CARD OUTPUT/INPUT BIT DEFINITION
MYBASIC ONLY SUPPORTS CRU ADDRESS >1300(PORT/1) AND >1500(PORT/2) FOR INP
AND OUTP.

ADDRESS BUS BIT LAYOUT (Only A3 thru A14 are used)
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
NOT USED BASE ADDRESS CRU ADDRESS

RS232 CARD CRU OUTPUT BIT DEFINITION

ADDR BIT DEFINITION
1300 0 DSR ROM page enable, 1=enable
1302 1 Parallel Port mode set, 1=input mode
1304 2 Parallel Port Strobe bit
1306 3 Spare Parallel Port bit
1308 4 Flag 0
130A 5 Clear To Send, RS232 Port 0, 0=active
130C 6 Clear To Send, RS232 Port 1, 0=active
130E 7 Indicator LED control,1=LED on

RS232 CARD CRU INPUT DEFINITION

ADDR BIT DEFINITION
1300 0 Spare
1302 1 Parallel Port configuration sense
1304 2 Parallel Port Acknowledge sense bit
1306 3 Spare Parallel Port Sense bit
1308 4 Flag 0
130A 5 Clear To Send, RS232 Port 0 sense
130C 6 Clear To Send, RS232 Port 1 sense
130E 7 LED state sense

9902 UART BASE ADDRESSES
UART 0=1340 UART 1=1380

TI RS232 CARD DEFINITIONS FOR ADDRESS C000 - C00E

ADDR CONTENTS EXPLANATION
C000 BYTE >AA Identification
C001 BYTE 1 Version number
C002 BYTE 0 Number of programs
C003 BYTE 0 Reserved
C004 DATA >C010 Power up routine
C006 DATA 0 User program header
C008 DATA >C016 DSR header
C00A DATA 0 Subroutine link header
C00C DATA >C06C Address of interupt link
C00E DATA 0 Address of subroutine libraries

260

APPENDIX P (Cont.)

RS232 INFO AND OUTP EXAMPLE CON'T

ASCII FUNCTION FUNCTION ASCII FUNCTION FUNCTION
CODE ACRONYM CODE ACRONYM

 0 NUL Null 17 DC1 Device Control 1
 1 SOH Start heading 18 DC2 Device Control 2
 2 STX Start text 19 DC3 Device Control 3
 3 ETX End text 20 DC4 Device Control 4
 4 EOT End transmission 21 NAK Negative ACK
 5 ENQ Enquiry 22 SYN Synchronous idle
 6 ACK Acknowledge 23 ETB End transmission block
 7 BEL Bell 24 CAN Cancel
 8 BS Backspace 25 EM End medium
 9 HT Horizontal tab 26 SUB Substitute
10 LF Line feed 27 ESC Escape
11 VT Vertical tab 28 FS File separator
12 FF Form feed 29 GS Group separator
13 CR Carriage return 30 RS Record separator
14 SO Shift out 31 US Unit separator
15 SI Shift in
16 DLE Data link escape

SOFTWARE OPTIONS

OPTION Enter As

BAUD RATE=110, 300,600, 1200, 2400, 4800, 9600 .BA=(desired rate)
DATA BITS= 7 or 8 .DA= 7 (or 8)
PARITY=ODD,EVEN,ONE .PA= O (or E or N)
TWO STOP BITS .TW
NULLS .NU
CHECK PARITY .CH
ECHO OFF .EC
CRLF OFF .CR
LF OFF .LF

Only Baud rate and stop bits are allowed in an OLD/SAVE to RS232
Only Nulls, Echo off, Crlf off and Lf off can be used with PIO

Example program using OUTP

100 A$="THIS IS A TEST"
110 CALL OUTP(1,7) Ring printer bell
120 CALL OUTP(1,15) Set printer to condensed
130 FOR X=1 TO 14 \
140 A=ASC(SEG$(A$,X,1)) Send ASCII value to printer
150 CALL OUTP(1,A) /
160 NEXT X /
170 CALL OUTP(1,18) Cancel condensed
180 CALL OUTP(1,10) Send linefeed
190 !CALL OUTP(1,13) Carriage return(uni-directional printers)
The 1 in OUTP is RS232 port at CRU >1300 2 would be >1500

261

APPENDIX Q

SECTOR 0 Volume Information Block VIB

ADDRESS CONTENTS

========= ==

0000-0009 Disk name-up to 10 characters

000A-000B Total number of sectors on disk

 total type sec/trk trks bytes

 >0168 360 SS/SD 9(>09) 40 92160

 >0280 640 SS/DD 16(>10) 40 163840

 >02D0 720 SS/DD 18(>12) 40 184320

 >02D0 720 DS/SD 9(>09) 40 184320

 >0500 1280 DS/DD 16(>10) 40 327680

 >05A0 1440 DS/DD 18(>12) 40 368640

 >05A0 1440 SS/DD 18(>12) 80 368640

 >0A00 2560 DS/QD 16(>10) 80 655360

 >0B40 2880 DS/QD 18(>12) 80 737280

 >1680 5760 HiDen 36(>24) 80 1474560

000C Number of sectors/track (see_above)

000D-000F DSK (>44534B)

0010 >50 = Disk protected >20 = Not protected

0011 Number of tracks >28=40 >50=80
0012-0013 Number of sides/density

 >0101 SS/SD >0202 DS/DD
 >0102 SS/DD >0202 DS/QD
 >0201 DS/SD >0203 DS/HD

0014-001D 1st Sub Directory Filename

001E-001F Directory link for File Descriptor Records of 1st SubDir See

0020-0029 2nd Sub Directory Filename NOTE 1

262

APPENDIX Q (Cont.)

SECTOR 0 Volume Information Block VIB

002A-002B Directory link for File Descriptor Records of 2nd SubDir
 below

002C-0035 3rd Sub Directory Filename

0036-0037 Directory link for File Descriptor Records of 3rd Sub Dir

0038-00EB Sector allocation bit map (AU)

 This is a sector by sector bit map of sector use 1=used
 0=available. The first byte at >38 is for sectors 0 through
 7(a fresh formatted DD or less with no subdirectories will

have >03 which equals 0000 0011 or 2 sectors used---read right
to left---sector 0 and sector 1), next byte is for sectors 8
through 15, and so on. For QD each bit equals 2 sectors, HiDen
equals 4 sectors.

 NOTE 1

It is highly recommended that you create sub directory prior
to placing files on a disk because MDOS uses the next
available sector to create the directory link to the file
descriptor records, which would place the sub directories
directory link at sector 2, 3, 4 and may make it possible

 for recovery of files easier in case the disk crashes.

SECTOR 1 Directory link

Each 16-bit word lists the sector number of the File Descriptor
Record for an allocated file, in Alphabetical order of the filenames.
Each Subdirectory will have a sector identified as its directory link
and will be structured the same as sector 1.

263

APPENDIX Q (Cont.)

SECTOR 2 FILE DESCRIPTOR RECORDS FDR

ADDRESS CONTENTS

========= ===
0000-0009 Filename-up to 10 characters

000A-000B Extended Record Length (if=>256)

000C Filetype |----FLOPPY---| |--HARDDRIVE--|

 NOT PROTECTED PROTECTED N/P PROTECT

 DIS/FIX >00 >08 >10 >18

 Program >01 >09 >11_See >19
 INT/FIX >02 >0A >12_NOTE_2 >1A

 DIS/VAR >80 >88 >90_below >98

 INT/VAR >82 >8A >92 >9A
000D Number of (MAXRECSIZE) records/sector or records/AU

000E-000F Number of sectors allocated to the file

0010 For memory-image program files and variable-length data files
 this contains the number of bytes used in the last disk sector
 of file. This is used to determine end-of-file.

0011 MAXRECSIZE of data file (logical record length if <256 else 0)
0012-0013 File record count, but with the second byte being the

 high-order byte of the value. (i.e. >2301=>0123)

0014-0015 Time of creation bits: hhhh hmmm mmms ssss
0016-0017 Date of creation YYYY YYYM MMMd dddd

0018-0019 Time of last change secs are /2 remainder discarded

001A-001B Date of last change

001C-001E Block link

For a file which is "not fractured", these three bytes point to
the sectors on which the file is stored. If we let the 6 nybbles
of these bytes be represented by >UVWXYZ then the word formed
from >0XUV will be the sector number of the first sector of the
file and >0YZW will be the logical offset of the last sector of
the file. That is, the number of sectors in the file will be
>0YZW + >0001(File Descriptor Record is not included in the
sector count). If the file is "fractured", then this three-byte
block refers to the first segment of the fractured file and will
be followed by as many additional three-byte blocks as there are
additional file segments. In each block the word >0XUV is the
starting sector of the segment and the word >0YZW is one less
than the total number of sectors used by the file through the
current segment.

264

APPENDIX Q (Cont.)

FILE STORAGE

Files are placed on the disk in first-come/first served manner.
The first file written will start at sector >0042, and each
subsequent file will be placed after it. Sectors >2 through >41
are reserved for File Descriptor Records. File data will be
stored in these sectors if no other sectors are available. If
more than 64 files are stored on a disk, additional File
Descriptor Records will be allocated as needed, one sector at a
time, from the next available pool of sectors unused. A
Subdirectory Directory Link map will be allocated the same as a
FDR as described in this section.

 NOTE 2

You should never see these codes on a floppy only system. These
codes are used as part of the harddrive structure. For HardDrive,
this byte in bit form of 76543210, will have bit 4 set. MDOS does
not change bit when Copy HD to Floppy occurs. i.e. I/V which
equals >82 and in bit form would be 1000 0010 and would be 1001
0010 or >92 if file has changed. Also bit 5 will be set if file
is a "DSK1"(emulate) type file.

265

APPENDIX R

DISK LAYOUT-HARDDRIVE MFM ONLY

The following information is based on a 20meg drive.

SECTOR >00 Volume Information Block VIB

ADDRESS CONTENTS

0000-0009 Disk volume name
000A-000B Total number of allocation units
000C Sectors per track
000D Number of DIR entries*64
000E Step rate of drive
000F Reduced write current cyl*8
0010-0011 Hard disk parameters
 1 2 3
 binary format xxxx xxxx x xxx xxxx
 1. Sectors/AU
 This is the number of sectors per allocation unit -1
 2. Number of heads
 This is the number of heads -1
 3. Write precompensation cyl*16
0012-0015 Time and date drive formatted
0016 The number of files in the root directory
0017 The number of sub-directories in the root directory
0018-0019 Pointer to the root directory index record(20meg=>20)
001A-001B Pointer to the DSK1 emulation descriptor record
001C- Sector pointers to sub-directories in root directory up to a max
of 114
 sub-directories. Each word(>xxxx)*AU=actual sector location

SECTOR >20 Root Directory Descriptor Record

0000-0017 This information follows the same format as sector >00
0018-0019 This points to the sector location of the Link Map of files in root
directory
 To find actual sector multiply this value by number of Allocation
Units per sector
 i.e 20meg (>0020*2=>0040)

SECTOR >40 Link Map(Index) of files in root directory(20 meg drive)

 The 2 byte values are the sectors of the files in the root directory
 Each value must be multiplied by Allocation Units per sector

266

APPENDIX R (Cont,)

FILE DESCRIPTOR RECORD

 All Files follow this format

0000-0009 File name
000A-000B Extended Record Length(if >255)
000C Filetype status flag(see layout floppy)
000D Number of records per sector
000E-000F Number of sectors used
0010 Same as layout-floppy
0011 Logical record length if <256 else 0
0012-0013 Number of records used
0014-0017 Time and date of creation
0018-001B Time and date of last update
001C-001D FI
001E-001F Pointer to previous File Descriptor Block 0 if none
0020-0021 Pointer to next File Descriptor Block 0 if none
0022-0023 Number of AUs allocated for this File Descriptor Record
0024-0025 Pointer to parent(Directory/Sub-directory map) of this file
0026-0027 Extented info about file
0028-0029 First sector of data for this file
002A-002B Last sector of data for this file if not fractured
 Total sectors would be Last minus First +1
 If fractured additional words would follow indicating first and last of
fracture

For more detailed information consult the HFDC manual.

267

