

GenRef
v1.00

MDOS Reference guide.

Memory Library

(C) Copyright 1989
J. Paul Charlton

ALL RIGHTS RESERVED

MEMORY CONTENTS

 Page

 Memory management overview........................1

 Calling memory functions..........................2

 Available memory..................................3

 Allocate memory...................................3

 Release memory....................................9

 Map memory..12

 Get memory list...................................14

 Declare shared memory.............................16

 Release shared memory.............................18

 Use shared memory.................................19

 Get size of shared group..........................20

 Free task...21

 Get memory page...................................21

 Free memory page..................................22

 Free memory node..................................23

 Link memory node..................................23

 Get memory list (system)..........................24

MEMORY MANAGEMENT OVERVIEW

 The memory management routines in MDOS are provided to
 aid a programmer in writing applications which are larger
 than the 64 Kbytes directly addressable by the CPU's 16
 address lines. They also serve the purpose of providing
 each task with it's own private address space, separate from
 memory accessible to other tasks.

 Each task under MDOS can have 2 Mbytes of virtual memory,
 using 21 address bits. The 21 addresses bits consist of two
 fields. The first field includes the eight most significant
 address bits, and is referred to as the virtual page number.
 The second field consists of the thirteen least significant
 address bits, and is referred to as the page offset.

 The physical memory in the Geneve computer has 21 address
 lines, for a maximum of 2 MBytes of physical memory. Like
 virtual memory, each physical address can be thought of as a
 21 bit address of two fields, with the first eight bit field
 called the physical page number, and the final thirteen bit
 field referred to as the page offset.

 NOTE: It can be easy to confuse physical pages with virtual
 pages, so be careful when reading the opcode descriptions
 below.

 The 16 address lines provided by the 9995 processor can
 be thought of two fields. The first field is the most
 significant three bits of the address and is called the
 "window number". The least significant thirteen bits are
 the page offset. These 16 address bits can be referred to
 as the linear address space of the CPU.

 The virtual address space and the linear address space
 are of the most interest to people writing tasks which run
 under MDOS. The memory management routines provide
 transparent methods of assigning physical memory pages into
 your task's virtual address space and transparent methods of
 viewing any 8k block of a task's virtual address space
 within one of the seven usable 8k memory windows in the
 linear address space.

MEM - 2 GenREF v1.00

 MDOS maintains two arrays to manage the physical memory
 pages belonging to your task. The first array, which only
 contains 8 physical page numbers, is part of the Geneve
 hardware and is called the "mapper". The mapper is used to
 assign a physical memory page to each of the eight 8k
 windows addressable in the 9995's linear address space. The
 second array, which is actually stored as a singly linked
 list within MDOS, is stored in RAM under control of the MDOS
 memory management routines and is referred to as "the
 virtual page list". Each node in the virtual page list
 consists of a physical page number and various attributes
 for that page. Various attributes used in the virtual page
 list allow for pages to be unassigned (correspond to no
 useful physical page), for pages to be shared, for pages to
 be disk-resident (swapped out), and for pages to be private
 (accessible to only your task.)

CALLING MEMORY FUNCTIONS

 The MDOS memory management functions must be called from
 within a machine code program running as a task under MDOS.
 You pass arguments to the memory management functions using
 only a few registers of your program's workspace.

 The MDOS memory management functions are invoked from a
 machine code program when software trap number zero (XOP 0)
 is called with a library number of 7. The calling program's
 R0 must contain the opcode of the routine within the memory
 management library which is to be performed. The following
 code fragment will allocate memory to your task.

 LI R0,1
 LI R1,7 56k bytes
 LI R2,1 starting @>2000
 SETO R3 try fast pages
 XOP @SEVEN,0
 MOV R0,R0
 JNE MEMERR
 * ...
 SEVEN DATA 7
 *...

 GenREF v1.00 MEM - 3

AVAILABLE MEMORY

Function You would use this operation in a program when you
 want to determine how much memory is available for
 use. It returns the total number of 8k pages
 installed, the number of zero wait state 8k pages
 available, and the total number of 8k pages
 available (both fast and slow pages).

Parameters R0 = 0 (opcode)

RESULTS R0 = 0 (no error)
 R1 = total number of free pages
 R2 = number of free zero wait state pages
 R3 = total number of installed pages

ALLOCATE MEMORY

Function This routine allows you to assign physical pages
 of memory from system list of free pages to
 virtual pages belonging to your task. You must
 use this function if you wish to use more memory
 than your program occupied on disk as a program
 image file. You must also use this function if
 you wish to use more than 64k of memory in a
 program you have written. This routine will not
 reassign pages which have already been allocated,
 even if the block of pages you specify overlaps
 pages which have already been assigned to your
 task.

 On successful return, all pages in the range
 R2..(R2+R1-1) are available for use by your task.

Parameters R0 = 1 (opcode)
 R1 = page count
 R2 = starting page
 R3 = speed flag 0 (use first available memory page)
 <>0 (use zero wait state pages, if available)

Results R0 = error code
 R1 = new count
 R2 = fast count

MEM - 4 GenREF v1.00

Parameter Description

Page count This is the number of consecutive memory pages you
 wish to have for your program, it is not
 necessarily the number of pages which will be
 returned to your program. As an example, to
 allocate 20k bytes of memory for your program, you
 must actually ask for three 8k memory pages. The
 number of pages you need to ask for can be
 calculated from the number of bytes you need as
 follows:

 pages = (bytes + >1fff) / >2000

Starting page This is the virtual page number within your task's
 memory at which you want to allocate more memory
 pages. If you were to think of your task's memory
 as having addresses ranging from >000000 to
 >1fffff (0 to 2 MB), this number is the address
 divided by 8192 (remainder is discarded.)

Speed flag If this flag is non-zero, MDOS will attempt to
 assign zero wait state memory pages to your task.
 If there are not enough zero wait state pages
 available to satisfy your request, MDOS will
 assign slow pages to your task in order to satisfy
 the request.

 If this flag is zero, and your computer has 512k
 of (one wait state) RAM on the motherboard, MDOS
 will first attempt to assign slow pages to your
 task. If there are not enough slow pages, MDOS
 will continue by allocating fast pages to your
 task.

 If this flag is zero, and your computer has 1024k
 of (zero wait state) RAM on the motherboard, MDOS
 will first attempt to assign fast pages to your
 task. If there are not enough fast pages, MDOS
 will continue by allocating slow pages to your
 task.

 The "fast count" returned to you reflects the
 number of fast pages allocated as a result of the
 operation, and the "fast count" subtracted from
 the "new count" returned to you reflects the
 number of slow pages allocated as a result of the
 operation.

 If the "fast count" returned to you is non-zero,
 and different from the number of pages you
 requested, there is no convenient method of
 determining which pages are fast, and which are
 slow. The easiest deterministic method of telling
 which pages are fast and which are slow is to ask

 GenREF v1.00 MEM - 5

 MDOS for one page at a time, and look at the "fast
 count" resulting from each single-page allocation.

Error code 0 = No error. This indicates that the pages you
 specified can now be used by your task.

 1 = Insufficient memory. When you get this error,
 there were not enough pages free in the system to
 accommodate your request for more memory. No
 additional pages have been assigned to your task,
 even if there were some free memory pages in the
 system.

 (NOTE: Calling the "Available memory" operation to
 determine the amount of memory available, followed
 by the "Allocate memory" operation with fewer
 pages than reported to you from "Available memory"
 can still fail, since another task may have
 allocated pages in between your two calls. Do not
 rely on being able to call the two routines in
 succession without checking the error code
 returned from the "Allocate memory" operation.)

 7 = Attempt to overwrite shared page. You will
 get this error if any page in the range
 R2..(R2+R1-1) is already allocated to your task
 with a "shared" attribute. No additional pages
 have been assigned to your task if you receive
 this error, even if there were enough free memory
 pages in the system to accommodate your request.

 8 = Out of table space. You will receive this
 error if too many tasks have large gaps of
 unassigned pages in their memory maps. The
 current versions of MDOS allow 480 virtual pages
 between all tasks which are currently executing.
 Note that there are only 256 possible physical
 pages, and that there are only 128 physical pages
 even if you have the 512k expansion RAM, so tasks
 would have to be pretty wasteful (have more gaps
 than actual pages) in order to use up all 480
 virtual pages allowed by MDOS. If you get this
 error, your program should just give up and tell
 the user to try later.

New count This is the number of pages which were newly
 assigned to your task, and is only valid if you
 did not receive an error from the "allocate
 memory" call. This number can be less than the
 number of pages you requested if some of the pages
 in the range R2..(R2+R1-1) were already assigned
 to your task.

 GenREF v1.00 MEM - 6

Fast count This is the number of fast pages which were newly
 assigned to your task, and is only valid if you
 did not receive an error from the "allocate
 memory" call. You would use this to check if MDOS
 actually assigned any fast pages to your task.

Example 1.1 Filling a hole

 R0=1 Opcode
 R1=2 Number of pages to get
 R2=4 Virtual page number
 R3=0 Speed flag

 Virtual Physical Physical
 Page Page Page

 Before After

 0 >3F >3F
 1 >3E >3E
 2 >3D >3D
 3 (>FF) (>FF) hole
 4 (>FF) >33 new page
 5 (>FF) >32 new page
 6 (>FF) (>FF) hole
 7 >3C >3C
 8 >3B >3B
 9 >3A >3A
 10 >39 >39
 11 >38 >38
 12 >37 >37
 13 >36 >36
 14 >35 >35
 15 >34 >34

Note: The pages (>FF) represent holes in the tasks
 virtual memory map. The physical page >FF is
 actually part of the boot rom on your computer,
 and cannot be overwritten by your task.

MEM - 7 GenREF v1.00

Example 1.2

 R0=1 Opcode
 R1=1 Number of pages to get
 R2=17 Virtual page number
 R3=0 Speed flag

 Virtual Physical Physical
 Page Page Page

 Before After

 0 >3F >3F
 1 >3E >3E
 2 >3D >3D
 3 (>FF) (>FF) hole
 4 (>FF) (>FF) hole
 5 (>FF) (>FF) hole
 6 (>FF) (>FF) hole
 7 >3C >3C
 8 >3B >3B
 9 >3A >3A
 10 >39 >39
 11 >38 >38
 12 >37 >37
 13 >36 >36
 14 >35 >35
 15 >34 >34
 16 (null) (>FF) new hole
 17 (null) >33 new page

 GenREF v1.00 MEM - 8

 Notice that this routine only fills holes, it does
 not assign a new physical page to a virtual page
 which is already assigned to your task.

Example 1.3 Overlaying Pages

 R0=1 Opcode
 R1=5 Number of pages to get
 R2=1 Virtual page number
 R3=0 Speed flag

 Virtual Physical Physical
 Page Page Page

 Before After

 0 >3F >3F
 1 >3E >3E no change
 2 >3D >3D no change
 3 (>FF) >33 new page
 4 (>FF) >32 new page
 5 (>FF) >31 new page
 6 (>FF) (>FF) hole
 7 >3C >3C
 8 >3B >3B
 9 >3A >3A
 10 >39 >39
 11 >38 >38
 12 >37 >37
 13 >36 >36
 14 >35 >35
 15 >34 >34

 Notice that even though you asked for 5 pages,
 only 3 were actually assigned, since two of the
 specified pages had already been assigned.

MEM - 9 GenREF v1.00

RELEASE MEMORY

Function You will use this routine to return unused memory
 to MDOS, this is useful if your program uses lots
 of temporary data. This is also one of the
 functions used by MDOS to free memory when your
 task is terminated. Any page which is released by
 your task which is also currently mapped into one
 of your task's seven memory windows will be
 removed from the memory window used by your task,
 and its entry in the mapper will be replaced by
 page >FF.

 You may not release virtual page zero of your task
 using this function (although page zero may be
 accessed by your task, it doesn't really belong to
 your task.)

 This opcode cannot be used to free shared pages
 belonging to a task. Shared memory pages must be
 freed with opcode #6.

Parameters R0 = 2 (opcode)
 R1 = page count
 R2 = starting page

Results R0 = error code

Parameter description

Page count This the number of memory pages you wish to free
 from your program. It is not necessarily the same
 as the number of physical memory pages which will
 actually be freed from your task. Shared pages,
 and unallocated pages in the range R2:(R2+R1-1)
 will not be released from your task. No pages
 will be released if this count is zero.

Starting page This is the page number of the first virtual
 memory page you wish to have released from your
 task. This procedure will attempt to release all
 of your task's virtual memory pages in the range
 R2:(R2+R1-1) into the free page pool.

Error code 0 = No Error. This indicates that the non-shared
 pages in the range specified have been released
 from your task back to the free pages in the
 system.

 2 = Attempt to free page zero. This indicates
 that you tried to free virtual page zero of your
 task. No pages were actually released from your
 task.

 GenREF v1.00 MEM - 10

 8 = Out of table space. MDOS was unable to free a
 page because there weren't enough virtual pages
 nodes available to create a new page in the free
 pool. When you receive this error, it is possible
 that some, but not all, of the pages in the range
 R2:(R2+R1-1) have been moved to the free pool.
 You will receive this error if too many tasks have
 large gaps of unassigned pages in their memory
 maps. The current versions of MDOS allow 480
 virtual pages between all tasks which are
 currently executing. Note that there are only 256
 possible physical pages, and that there are only
 128 physical pages even if you have the 512k
 expansion RAM, so tasks would have to be pretty
 wasteful (have more gaps than actual pages) in
 order to use up all 480 virtual pages allowed by
 MDOS. If you get this error, your program should
 just give up and tell the user to try later.

Example 2.1 Making a Hole

 R0=2 Opcode
 R1=9 Number of pages to release
 R2=2 First virtual page to release

 Virtual Physical Physical
 Page Page Page

 Before After

 0 >3F >3F
 1 >3E >3E
 2 >3D (>FF) new hole
 3 (>FF) (>FF) hole
 4 (>FF) (>FF) hole
 5 (>FF) (>FF) hole
 6 (>FF) (>FF) hole
 7 >3C (>FF) new hole
 8 >3B (>FF) new hole
 9 >3A (>FF) new hole
 10 >39 (>FF) new hole
 11 >38 >38
 12 >37 >37
 13 >36 >36
 14 >35 >35
 15 >34 >34

 Note that only five pages were actually released
 from your task to MDOS, since some of the pages in
 the specified range were already unassigned.

MEM - 11 GenREF v1.00

Example 2.2 Making list shorter

 R0=2 Opcode
 R1=8 Number of pages to release
 R2=10 First virtual page to release

 Page Page Page

Virtual Physical Physical

 Before After

 0 >3F >3F
 1 >3E >3E
 2 >3D >3D
 3 (>FF) (>FF)
 4 (>FF) (>FF)
 5 (>FF) (>FF)
 6 (>FF) (>FF)
 7 >3C >3C
 8 >3B >3B
 9 >3A >3A
 10 >39 null freed
 11 >38 null freed
 12 >37 null freed
 13 >36 null freed
 14 >35 null freed
 15 >34 null freed

 The list was truncated, since all of the pages at
 the tail of the list were unassigned. Also note
 that we really told it to release pages 10 to 18,
 but we only had pages up to 15 to begin with. No
 error is reported when you attempt to release
 unassigned pages.

 GenREF v1.00 MEM - 12

MAP MEMORY

Function This routine can be used to place a physical page
 into the mapper chip for the specified virtual
 page belonging to your task. You can think of the
 mapper as providing seven usable 8k "memory
 windows" into your task's virtual memory space.
 You tell this routine which of the seven windows
 to use, and which part of virtual memory to look
 at. This routine can not be used to overwrite
 page zero of your task.

 You should use this routine for mapping memory if
 you want your program to be able to use
 transparent demand paging in future versions of
 MDOS which support page swapping to hard disk.

 (NOTE: If you are using window number seven, the
 one which is at >E000 in your direct address
 space; the data from offset >1000 to >1140 in the
 page will be corrupted by writes to addresses in
 the range >F000 to >F140. Do not use window
 number seven unless it is ok for the data in the
 specified range to be corrupted.)

 On successful return, the specified virtual page
 belonging to your task has been mapped into the
 window you specified and is available for use.

Parameters R0 = 3 (opcode)
 R1 = page number
 R2 = window number

Results R0 = error code
 mapper = new page

Parameter description

Window number This parameter, in the range 1:7, is used to
 tell MDOS which of the seven 8k byte windows
 in the processor's 16-bit address space to use for
 the specified virtual page belonging to your task.

 Processor address = Window_number * >2000

Page number This is the virtual page number within your task
 that you wish to have mapped into the specified
 window in the processor's 16-bit address space.
 Virtual memory in the address range (page *
 >2000):(page * >2000 +>1fff) will be accessible to
 your program with the 16-bit addresses (window *
 >2000):(window * >2000 + >1fff).

MEM - 13 GenREF v1.00

Error code 0 = No Error. This indicates that the specified
 virtual memory page of your task has been mapped
 into the specified memory window.

 2 = Header page mapping violation. You attempted
 to map a virtual page into window zero, which is
 reserved for your task's header by MDOS.
 Alternatively, you attempted to map virtual page
 zero, your task's header, into some other memory
 window. Your task's memory map has not been
 changed if you get this error.

 3 = Unassigned virtual page, or Invalid memory
 window. The virtual page you specified has never
 been allocated by your task, and contains no valid
 data (it is a "hole" in your address space.)
 Alternatively, you specified a window number
 larger than seven. Your task's memory map has not
 be changed if you get this error.

Mapper In MDOS mode, the mapper is 8 bytes long, and
 located at >F110 in the processor's 16-bit address
 space. Each byte in the mapper contains a
 physical memory page number, in the range >00:>FF.
 Assignments are as follows:

 Mapper register = >F110 + Window_number

 Note that each mapper register corresponds to a
 specific 8k block in the processor's 16-bit
 address space. After successful completion of the
 "Map Memory" function, the mapper register
 corresponding to the window you specified will
 contain the physical page number of the virtual
 page you specified.

 Symbolically:
 mapper[window number] = task_pages[virtual page
 number]

 GenREF v1.00 MEM - 14

GET MEMORY LIST

Function This operation returns an array of physical page
 numbers (each is one byte) corresponding to the
 virtual pages belonging to your task. You are
 allowed to specify the address of the first byte
 in the array, and the maximum number of elements
 in the array.

 This array of physical page numbers is useful if
 you need to speed up memory paging in your task by
 use of your own paging code. If your program
 performs its own paging, you will need to call
 this opcode after every call to a memory
 management function which adds or removes pages
 from your virtual address space. (Opcodes 1,2,6,7)

 In future versions of MDOS which support
 transparent demand paging, this operation will
 also "lock" all of your task's virtual pages into
 RAM, making them ineligible for paging. To
 "unlock" your virtual pages, another opcode will
 be provided for your use. (Normally, only pages
 which are currently mapped into one of the seven
 processor windows for your task would be "locked"
 into RAM.)

 On successful return, the array will contain the
 physical page numbers for the virtual pages in
 your task.

Parameters R0 = 4 (opcode)
 R1 = array start
 R2 = array size

Results R0 = error code
 R1 = array used

Parameter description

Array start You specify the address of the first byte in your
 array using this parameter. The physical page
 number of your task's header page, virtual page
 number zero, is placed in the first byte of the
 array. This is a 16-bit processor address for a
 location which is currently mapped into your
 task's memory windows.

Array size This is the maximum number of physical page
 numbers which can be returned to your task. The
 indexes of the array elements can range from zero
 to (array size)-1.

MEM - 15 GenREF v1.00

Error code 0 = No Error. This indicates that the array
 contains all of the physical page associations for
 the virtual pages in your task. The number of
 actual array elements used can be less than the
 maximum size you specified for the array.

 8 = Array not large enough. Your array was not
 large enough to hold all of the physical page
 numbers in use by your task. When you get this
 error, the contents of the array are valid up to
 the maximum element which you allowed.

Array used This indicates the number of valid pages returned
 in the array. When you perform your own paging,
 you should make sure that you never index into the
 array after the last valid page (You will end up
 mapping a page which doesn't belong to your task.)

Sample Code

 Assuming that you've already called this opcode,
 the follow code fragment will map in a data item
 pointed to by a 32 bit address.

 assume: r1,r2 = 32 bit pointer, @paglst are bytes from opcode #4

 movb r2,r1 ok, since only low 5 bits of r1 are used
 andi r1,>e01f keep 8 bits, zap the others
 src r1,13 rotate to make an index into the page list
 andi r2,>1fff mask off the high three bits, they're now
 * in R1 ...
 *
 movb @paglst(r1),@mapper+4 put it at >8000
 movb @paglst+1(r1),@mapper+5 put next page at >a000
 *
 * it is not necessary to place two pages into the mapper if you
 * know for certain that the record accessed by the pointer does
 * not cross page boundaries, the above code is just a method of
 * playing it safe
 *
 mov @>8000+field_offset(r2),r3
 *
 * this of course assumes that there is some record addressed by
 * the initial pointer, and that the record contains fields of some
 * data structure. Fields are easy to set up with a DORG statement
 * for each record type in use by an application
 *

 GenREF v1.00 MEM - 16

DECLARE SHARED MEMORY

Function This routine is used to declare a range of pages
 currently belonging to your task as "shared"
 memory pages, which means that they can be used by
 other tasks. An example of two tasks sharing
 memory would be an editor which "shared" all of
 its text buffer with an assembler, so that the
 assembler could assemble from RAM rather than from
 disk.

 Each group of pages declared as shared has a type,
 which you assign. When another application wants
 to share those memory pages with your task, it
 will ask MDOS to use a certain type of shared
 pages. An editor buffer could be declared as one
 specific type, while object code would be declared
 as a separate type, so that programs would not use
 the wrong sort of data as input (You wouldn't want
 a Fortran compiler to use a binary program as its
 input!)

 It is recommended that "types" be assigned by the
 distributor of MDOS, so that incompatible
 applications do not try to use the same "type" if
 you decide to use a "type" please correspond with
 the distributor of MDOS to coordinate your
 development efforts with others.

 A "shared" type may only be declared once, and
 always resides in a group of consecutive virtual
 pages. If all applications using a "shared" group
 of pages release those pages, the "type" may be
 redeclared. (MDOS keeps a count of the number of
 applications using a shared group, and if the
 count ever becomes zero, the type is made free for
 re-use)

 Note: It is not possible to declare page 0 to be
 part of a shared group. Page 0 is always private,
 since it contains the information which MDOS uses
 to distinguish between tasks.

Parameters R0 = 5 (opcode)
 R1 = page count
 R2 = starting page
 R3 = shared type

Results
 R0 = error code

MEM - 17 GenREF v1.00

Parameter Description

Page count This is the number of consecutive virtual pages
 belonging to your task which will be declared as a
 shared page group for use by other tasks.

Starting page This is the virtual page number within your task
 of the first virtual page which will become part
 of the shared page group. Pages in the range
 (start_page):(start_page+page_count-1) will belong
 to the group.

Shared type This must be in the range >01:>FE, and should be a
 code unique to the format of data which you are
 sharing with other tasks. It is recommended that
 you use a common set of source code routines for
 data access for all of your tasks which use the
 data.

Error code 0 = No Error. This indicates that virtual pages
 you specified can now be shared by other tasks
 running under MDOS.

 3 = Bad page. At least one of the pages in the
 range (start_page):(start_page+page_count-1) has
 never been allocated by your task. The shared
 group has not been defined if you get this error.

 5 = Invalid type code. Your "shared type"
 parameter was not in the range >01:>FE, or your
 "shared type" code has already been declared by
 another task. The shared group does not contain
 the pages you specified if you get this error.

 7 = Invalid page declaration. At least one of the
 pages in the range (start_page) : (start_page +
 page_count-1)is unallocated, already declared as
 shared, or is virtual page number zero. The shared
 group has not been defined if you get this error.

 8 = Out of table space. MDOS was unable to create
 the shared type because weren't enough virtual
 pages nodes available to create a shared page
 group descriptor list. You will receive this error
 if too many tasks have large gaps of unassigned
 pages in their memory maps. The current versions
 of MDOS allow 480 virtual pages between all tasks
 which are currently executing. Note that there
 are only 256 possible physical pages, and that
 there are only 128 physical pages even if you have
 the 512k expansion RAM, so tasks would have to be
 pretty wasteful (have more gaps than actual pages)
 in order to use up all 480 virtual pages allowed
 by MDOS. If you get this error, your program
 should just give up and tell the user to try
 later.

 GenREF v1.00 MEM - 18

RELEASE SHARED MEMORY

Function This operation removes all shared memory pages of
 the specified type from your task's virtual memory
 list. If your task was the only task using the
 shared page group, the group will become
 undefined, and must be redeclared before use. Any
 page which is released by your task which is also
 currently mapped into one of your task's seven
 memory windows will be removed from the memory
 window used by your task, and its entry in the
 mapper will be replaced by page >FF.

Parameters R0 = 6 (opcode)
 R1 = shared type

Results R0 = error code

Parameter description

Shared type This is a shared group type number, in the range
 >01:>FE, and must have been previously defined by
 another task.

Error code 0 = No Error. This indicates that all of the
 pages from the shared group you specified have
 been released from your task.

 6 = Invalid type. The type you specified was not
 in the range >01:>FE, or hasn't yet been declared
 by another task.

 8 = Out of table space. MDOS was unable to free a
 page because there weren't enough virtual pages
 nodes available to create a new page in the free
 pool. When you receive this error, it is possible
 that some, but not all, of the pages belonging to
 the shared group have been moved to the free pool.
 If you get this error, your program should just
 give up and tell the user to try later.

 GenREF v1.00 MEM - 19

USE SHARED MEMORY

Function This operation will include the pages from the
 shared type specified in your task's list of
 virtual pages. The shared type must be been
 previously declared by another task. When you
 call this function, all pages in the range
 (start_page):(start_page+shared_size-1) must not
 be allocated by your task, since you are not
 permitted to overlay shared and existing pages in
 your virtual page list.

Parameters
 R0 = 7 (opcode)
 R1 = shared type
 R2 = start page

Results R0 = error code

Parameter Description

Shared type This is a type code for a shared page group which
 must have been declared by another task. If your
 task has enough contiguous available virtual pages
 beginning with the start page you specified, all
 of the pages from the shared page group will be
 mapped in at the specified virtual page address.

Start page This is the virtual page number within your task
 of the first virtual page which will be used by
 the shared page group. After calling this
 operation, you must explicitly map in the virtual
 pages which have just been assigned, since they
 will not be automatically placed into your task's
 mapper registers.

Error code 0 = No Error. The shared page group of the type
 you requested was already defined and was
 successfully mapped into your task's virtual page
 list.

 2 = Attempt to overlay page zero. You specified
 virtual page zero as the start page for the shared
 memory group. No pages from the memory group have
 been allocated to your task if you get this error.

 6 = Invalid shared type. The type you specified
 was not in the range >01:>FE or has not yet been
 defined for use by another task. No pages from
 the memory group have been allocated to your task
 if you get this error.

MEM - 20 GenREF v1.00

 7 = Attempt to overlay shared and private memory.
 Your task did not have enough contiguous free
 virtual pages starting with the virtual page
 specified to map in the pages from the shared
 group. No pages from the memory group have been
 allocated to your task if you get this error.

 8 = Out of table space. There were not enough
 free nodes available to extend your task's virtual
 page list. MDOS is out of table space. At this
 point, your task should give up and tell the user
 to try later. No pages from the memory group have
 been allocated to your task if you get this error.

GET SIZE OF SHARED GROUP

Function This operation reports the number of pages which
 belong to a shared page group. It should be used
 by your task before you have the shared page group
 assigned into your virtual page list, so that you
 know in advance if your task has enough unused
 contiguous pages to overlay the shared page group.

Parameters R0 = 8 (opcode)
 R1 = shared type

Results R0 = error code
 R1 = shared size

Parameter description

Shared type This is a type code for a shared page group which
 must have been declared by another task. On
 successful return, the number of pages in this
 page group is returned to your task.

Error code 0 = No Error. The shared page group of the type
 you requested was already defined and its size was
 returned to you.

 6 = Invalid shared type. The type you specified
 was not in the range >01:>FE or has not yet been
 defined for use by another task.

Shared size On successful return, this will contain the size,
 in 8k pages, of the specified shared page group.

 GenREF v1.00 MEM - 21

FREE TASK

Function This routine can not be directly used by tasks
 under MDOS, it is reserved for use by system
 library functions.

 This is used to free all memory pages, except the
 task's header, from the task's list of virtual
 pages. If the task is using a shared page group,
 its reference to the group will be removed, and
 the group itself will be removed if this was the
 last task using the shared page group.

Parameters R0 = 9 (opcode)
 R1 = first node

Results R0 = error code

Parameter description

First node This is the MEMLST pointer from the task's header.

Error code 0 = No Error. The pages belonging to the task
 were freed.

 >FFFF = Invalid opcode. You attempted to call
 this from a user task.

GET MEMORY PAGE

Function This routine can not be directly used by tasks
 under MDOS, it is reserved for use by system
 library functions.

 It is used to get a single memory page, by
 specific physical page number, or by speed
 priority.

Parameters R0 = 10 (opcode)
 R1 = physical page
 R2 = speed flag

Results R0 = error code
 R1 = node pointer

MEM - 22 GenREF v1.00

Parameter description

Physical page If this is in the range >00:>FF, MDOS will return
 a pointer to the memory node for the page, only if
 the page is currently unassigned.

 If this is larger than >FF, MDOS will return a
 pointer to the memory node for the the first free
 page in the system with the specified speed
 attribute.

Speed flag This parameter is used only if the physical page
 number specified is larger than >FF. If this is
 zero, MDOS will allocate the first memory page
 available in the free list. If this is non-zero,
 MDOS will attempt to allocate the first zero wait
 state page available from the free list, if there
 are no zero wait state pages available, MDOS will
 allocate the first free page it finds.

Error code 0 = No Error. The page was reserved as specified,
 it is not assigned to any task, and it is not
 available for use.

 1 = Page not available. The specified page was
 not free, or there are no free pages in the entire
 system.

 >FFFF = Invalid opcode. You attempted to call
 this from a user task.

Node pointer This is pointer to a 4 byte memory node inside of
 the memory library's address space.

FREE MEMORY PAGE

Function This routine can not be directly used by tasks
 under MDOS, it is reserved for use by system
 library functions.

 Adds the specified physical page to the list of
 pages available for use by user tasks.

Parameters R0 = 11 (opcode)
 R1 = page number

Results R0 = error code

Parameter description

Page number This a simply a physical page number to be freed.

 GenREF v1.00 MEM - 23

Error code 0 = No Error. The page was reserved as specified,
 it is not assigned to any task, and it is not
 available for use.

 8 = Out of table space. MDOS was unable to create
 a free page because there weren't enough virtual
 pages nodes available to create a new page in the
 free pool.

 >FFFF = Invalid opcode. You attempted to call
 this from a user task.

FREE MEMORY NODE

Function This routine can not be directly used by tasks
 under MDOS, it is reserved for use by system
 library functions.

 This operation will add the specified 4-byte node
 to the memory nodes available for use by the other
 memory management library functions.

Paramaters R0 = 12 (opcode)
 R1 = node address

Results R0 = error code

Parameter description

Node address This is the address of the 4-byte node within the
 memory management library's address space.

Error code 0 = No Error. The node was added to the free node
 list.

 >FFFF = Invalid opcode. You attempted to call
 this from a user task.

LINK MEMORY NODE

Function This routine can not be directly used by tasks
 under MDOS, it is reserved for use by system
 library functions.

 This is used to link memory nodes together. It
 can be used to link page nodes onto a task's
 virtual memory list, to link page nodes to the
 system free page list, and to link nodes into the
 free node list.

MEM - 24 GenREF v1.00

Parameters R0 = 13 (opcode)
 R1 = new node
 R2 = old node

Results R0 = error code

Parameter description

New node The node to be inserted into a list after the old
 node.

Old node The node, in a node list, after which the new node
 is to be inserted.

Error code 0 = No Error. The nodes were linked together.

 >FFFF = Invalid opcode. You attempted to call
 this from a user task.

GET MEMORY LIST (system)

Function This routine can not be directly used by tasks
 under MDOS, it is reserved for use by system
 library functions.

 This routine will return a task's virtual page
 list to location >1F00 in system page zero. This
 is used primary by the DSR routines to locate data
 pointed to by a task's PAB buffer address.

Parameters R0 = 14 (opcode)

Results R0 = -1 (error code)
 R0 = page count (no error)

Parameter description

Error code >FFFF = Invalid opcode. You attempted to call
 this from a user task.

Page count This is the number of valid pages in the page list
 at >1F00 in system page zero. This count is also
 returned at >1FFE.

