
99/9640
FORTRAN

lW VERSION 4

PRODUCTS

n

-

•

USER REFERENCE MANUAL

VERSION 4.3, rev. 0

IMPORTANT NOTICE TO USERS

The user assumes'complete responsibility
for any decisions made or actions taken
on information contained using these pro
grams and book materials which are avail
able solely on an "as-is" basis.

LGMA does not warrant or represent that
the programs and book materials will be
free from error or will meet the specific
requirements of the user.

Ac know1edgement s

I would like to thank the following people who made Version 4 of
99/9640 FORTRAN possible, including:

Elmer Clausen, for providing most of the mathematical
functions in the FORTRAN library;

Paul Charlton, for his advice and tips on how to use the
MYARC Disk Operating System;

Dave Ramsey, for suggesting the MDOS version in the first
place;

Jeff Guide, for providing a FORUM (DELPHI) in which he
brought many of the technical people involved with the MYARC
GENEVE together;

Clint Pulley (author of C99), for giving me permission to use
hi6 QDE editor with the 9640 FORTRAN package, and also
providing me with tips on how to use the MDOS Operating
System;

Dr. Jerry Coffey, who's JUMPBOOT program saved me many hours
of reboot time in the early days of MDOS;

Ron Lepine, for helping me get the a99 cross-assembler bugs
worked out, and providing me with a forum on Byte Information
Exchange (BIX);

and most importantly, my wife Patti and children Heather and
Jeffrey, who put up with my long hours in preparing this
software package, and encouraged me to do it.

Please note the following trademarks used in this manual:

TI is a trademark of Texas Instruments, Incorporated, Dallas,
Texas.

MYARC, MDOS, and GENEVE are trademarks of MYARC, Inc.,
Basking Ridge, New Jersey.

LGMA, 99 FORTRAN and 9640 FORTRAN are trademarks of LGMA
Products, Coopersburg, Pennsylvania.

(c) Copyright 1989 by LGMA Products

New! VERSION 4

The latest in programming development for your TI-99/4A or MYARC 9640
GENEVE computer. Requires either a TI-99/4A with 32k memory expansion,
at least one disk drive, and one of the cartridges Editor/Assembler,
Mini-Memory, Extended BASIC, or Tl-Writer; or a MYARC GENEVE computer
with at least one DS/SD disk drive.

99/9640 FORTRAN taps into the power of your TI-99 or MYARC GENEVE
computer with the following features:

o Full screen editor, Optimizing FORTRAN compiler, Linker, Symbolic
debugger, and over 160 library routines.

o Six data types, including INTEGER *1, *2, *4; REAL *4, *8, and
LOGICAL *2

o Many FORTRAN 77 extensions, including BLOCK IF

o Symbolic debugger allows breakpoints by program line number,
and FORTRAN labels, memory access by variable name. MDOS
version allows source view and disassembly capabilities.

o Supports access to TMS9900 assembly language subroutines/functions.

ONTENTS: TI-99/4A Version: Boot Disk and Two (2) Library Disks. (SS/SD)
MDOS Version: Boot Disk and Library Disk (DS/SD)
230 Page User Manual

FORTRAN Language Summary

Control Statements

GOTO n
GOTO (nl, n2, ..., nm), s
IF (a) nl, n2, n3
IF (a) s
IF (a) THEN / ELSEIF (s) THEN
ELSE / ENDIF

DO n I=S1,B2[,S3]

DO WHILE (a) / s / ENDDO

PAUSE [i]
STOP [i]
END

Subprograms

type FUNCTION f(dl, d2, ..., dn)
SUBROUTINE s(dl, d2, ..., dn)
CALL s(al, a2, ..., an))
RETURN
EXTERNAL BUbl,...,subn

Compilation Directive Statements

INCLUDE 'file-name[/LIST,/NOLIST]'

Compilation Options

SC - Turn on Subscript Checking
OB - Object Code Listing
DM - Compile Debug Mode Statements
DB - Generate Debugger Symbols

Librarian Options:

ADD - Add Modules to Library
LIST - List Library

Memory Allocation (MDOS)

CALL CPMBR/CPMBW
CALL LVMBR/LVMBW
CALL RTFREE/RTPAGE
CALL MPLCPE/RTMAPR
CALL MALLOC

* = MDOS Only +=TI/99 Only

Input/Output Statements

READ (i, n [,keys]) list
WRITE (i, n [,keys]) list
label FORMAT (SI, S2, ..., Sn)

Specification Statements

DIMENSION vl, v2, ..., vn
COMMON si, s2, ..., sn
EQUIVALENCE si, 82, ..., sn
INTEGER [*1, *2, *4] si, s2, ..., sn
REAL [*4, *8] si, 82, ..., sn
DOUBLE PRECISION si, s2, ...
LOGICAL [*2] si, s2, ..., sn
IMPLICIT type (cl,c2,...,cn)
DATA sl/dl/,s2/d2/,...,sn/dn/

Programs

PROGRAM name

Debugger Commands (GPL/MDOS)

W - Workspace Inspect/Change
H - Hexadecimal Arithmetic
B - Remove/Add Breakpoints
M - Memory Inspect/Change
Q - Quit Debugger
R - Inspect/Change WP, PC, or SR
T - Trade Screen
S - Select Module
L - Load Symbol File

Debugger Commands (MDOS)

D - Disassemble at address
G - Go Program into Execution
P - Parameter Display
V - View Source Module
X,Y,Z - Constant Memory
? - Display Help

Input/Output

CALL OPEN
CALL DELETE
*CALL BREAD

CALL CLOSE
CALL FILES
•CALL BWRITE

FORTRAN Language Summary

Hath

IABS/ABS/DABS/KIABS/JIABS
IOR/KIOR/JIOR
IAND/KIAND/JIAND
IEOR/KIEOR/JIEOR
NOT/ISHFT
IFIX/FLOAT/SNGL/DBLE/DFLOAT
MOD/AMOD/DMOD
SQRT/DSQRT
SIN/COS/TAN
DSIN/DCOS/DTAN
SIN/COS/TAN/DSIN/DCOS/DTAN
ATAN/DATAN/ATAN2/DATAN2
COTAN/DCOTAN
EXP/EXP2/DEXP/DEXP2/EXP10/DEXP10
ERF/DERF/ERFC/DERFC
GAMMA/DGAMMA/ALGAMA/DLGAMA
ALOG/DLOG/ALOG2/DLOG2/ALOG10/DLOG10
ARSIN/DASIN/ARCOS/DACOS
IDIM/DIM/DDIM
ISIGN/SIGN/DSIGN

Sprites

CALL SPRITE
CALL MOTION
CALL DELSPR

CALL SPCHAR
CALL POSITI
CALL MAGNIF

Date/Time Library (MPQS)

*CALL CHETIM
•CALL CONTTS
•CALL CONSTT
•CALL CONJUL

Execution Errors

•CALL CHEDAT
•CALL CONDTS
•CALL CONSTD
•CALL RETDOW

AE - Argument Error
BC - Bad Character on Input
BF - Bad * of Files (1-9)
BM - Bad Video Mode
CL - Bad Color (1-16)
CO - Bad Column (1-32, 1-40, 1-80)
CS - Bad Character Set (1-28)
CV - Bad Column Velocity
DC - Bad Dot Column (1-255)
DR - Bad Dot Row (1192)
EC - Illegal FORTRAN function
IC - Illegal FORMAT character
II - Input for Output Item
10 - Input/Output Error
IR - Input Integer/Real FORMAT

Graphics

CALL GCHAR CALL HCHAR
CALL VCHAR CALL SCREEN
CALL COLOR CALL CHAR
CALL CHARPA CALL CLEAR
CALL SET32 CALL SET40
CALL SET80 CALL SETMOD
CALL SOUND CALL SOUSTA
CALL JOYST CALL KEY
CALL GVIDTB CALL VWTR
CALL VRFR CALL GETMOD
CALL SETPOS CALL GETPOS
•CALL SETVPG *CALL GETVPG
•CALL SCRLUP •CALL SCRLDN
•CALL SETBRD *CALL SETPAL
•CALL SETPIX *CALL GETPIX
•CALL SETVEC *CALL CLRSRC
•CALL HBLKMV/CP •CALL LBLKMV/CP
•CALL SETTWN •CALL BLKSUP/DN
•CALL GETTWN *CALL RESCHA
•CALL SETMSE *CALL GETMSE/MSR
•CALL SCRLLE/RI *CALL BLKSLE/RI

Miscellaneous

CALL WAIT CALL QUIT
CALL CLOCK IRAND
IVAL/VAL/DVAL CALL CHAIN
CALL PRINTC *CALL CMDSTR
•CALL LOCK

Memory Access

PEEK/I/J/K CALL LOADM
PEEKV/I/J/K

I/O Errors

0 - No Error
1 - Bad Device Name
2 - Write Protected
3 - Bad Open Attribute
4 - Illegal Operation
5 - Out of Buffer Space
6 - Read Past End of File
7 - Device Error
8 - File Error

Important Addresses

+XMLLNK 203C
+KSCAN 2040
+VSBW 2044

FORTRAN Language summary

Execution Errors (continued) important Addreses (continued1

IV -
KE -
MF -
*M0 -
NE -
NR -
OB -
OD
01 -
OR
OV •
0#
*PA -
RI -
*RG -
RO
RP -
S4 •
SA -
SC -
SD
SE -
SF -
SR -
SV -
VE -

* :

- Illegal Character Value
- Bad Keyboard Unit (0-5)
- Bad Magnify Factor (1-4)
- MDOS Function ONLY
- Nesting Error in FORMAT
- N Processing Error
- Bad Byte Count/OPEN (1-255)
Bad DISPLAY on OPEN (0/1)

- Bad INPUT on OPEN (0-3)
- Bad Relative on OPEN (0/1)
- Bad Variable on OPEN (0/1)
- Bad Device Number/OPEN
- Bad Pallette Number/SETPAL
- Real Item for Integer
- Bad Red/Green/Blue Color
- Bad Row Number (1-24)
- Bad 1 Repititions
- 40 column mode error
- Bad Shift Amount (-16-+16)
- Subscript Error
- Bad Sound Duration
- Illegal Subroutine
- Bad Sound Frequency
- Bad Sprite Number
- Bad Sound Volume
- VDP Access Error (address)

= MDOS Only + = TI/99 Only

+VMBW
+ VSBR
+VMBR
+VWTR
+DSRLNK
+MENU
+PRINTF
+SET40F
+LOGSTR
+LOGEND
+DATSTR
+DATEND
+COMEND
+CLOCK1
+CLOCK2
+CRTXY
+NUMLIN
+CHAPPL
+EXCDEV
+PRTDOP
+DSKSS
+BOTSHE
WSP
+FAC
+STFAC
+ARG
+KEYUNT

2048
204C
2050
2054
2058
2060
2002
2004
200E
2010
2012
2014
2016
2028
202A
2036
2036
2038
208E
209C
20A4
20A6
+8300 *F000
834A
8354
835C
8374

Table ot Contents

1 Introduction

Page /

1.1 Getting started
1.1.1 Booting from Editor/Assembler or Mini-Memory.
1.1.2 Booting from Tl-Writer
1.1.3 Booting from Extended Basic
1.1.4 Booting from MDOS Mode
1.1.5 Description of MENU

1.2 Special Keys .

2 Editor Operations

Introduction
TI-99 (GPL Implementation) Editor
2.1.1 Load Program
2.1.2 Edit Program
2.1.3 Save Program
2.1.4 Purge Workspace
2.1.5 Display Statistics
2.1.6 Print Program
2.1.7 Exiting the Editor

2.2 MDOS Editor (QDE)
2.2.1 Introduction
2.2.2 Using QDE
2.2.3 Acknowledgement
2.2.4 QDE Function Key Usage
2.2.5 QDE Usage Notes

3 Compiler Reference Manual

3.0 Introduction

3.1 FORTRAN Statements
3.1.1 Types of Statements
3.1.2 Statement Format
3.1.3 Constants

3.1.3.1 Integer Constants
3.1.3.2 Single Precision Constants
3.1.3.3 Double Precision Constants
3.1.3.4 Logical Constants
3.1.3.5 Hollerith Constants
3.1.3.6 Hexadecimal Constants
3.1.3.7 Octal Constants
3.1.3.8 Binary Constants

3.1.4 FORTRAN Names
3.1.5 FORTRAN Variables
3.1.6 Arrays and Subscripts
3.1.7 Subscripted Variables
3.1.8 Express ions

3.1.8.1 Numeric Expressions ...
3.1.8.2 Relational Expressions
3.1.8.3 Logical Expressions ...

1-01

1-03
1-03
1-03
1-03
1-04
1-04

1-05

2-01

2-01
2-01
2-01
2-02
2-03
2-04
2-04
2-04
2-05

2-06
2-06
2-06
2-07
2-07
2-08

3-01

3-01

3-01
3-01
3-01
3-02
3-02
3-03
3-04
3-04
3-04
3-05
3-05
3-06

3-07
3-07
3-07
3-08
3-08
3-08
3-09
3-09

Table of Contents Page 8

3.2 Assignment Statements 3-11
3.2.1 Arithmetic Assignment Statements 3-11
3.2.2 Logical Assignment Statements 3-11
3.2.3 Control Statements 3-12

3.2.3.1 GO TO Statements 3-12
3.2.3.2 Unconditional GO TO statement 3-12
3.2.3.3 Computed GO TO statement 3-11

3.2.4 IF statements 3-13
3.2.4.1 Arithmetic IF Statement 3-13
3.2.4.2 Logical IF Statement 3-14
3.2.4.3 Structured IF Statement 3-14

3.2.5 DO Statement 3-15
3.2.6 CONTINUE Statement 3-16
3.2.7 DO WHILE/ENDDO Statements 3-17
3.2.8 PAUSE Statement 3-17
3.2.9 STOP Statement 3-18
3.2.10 END Statement 3-18

3.3 Input/Output Statements 3-19
3.3.1 READ Statement 3-19
3.3.2 WRITE Statement 3-20
3.3.3 Variable Lists 3-20
3.3.4 Input/Output Device Unit Assignments 3-21
3.3.5 FORMAT Statements 3-23
3.3.6 FORMAT Specifications 3-23

3.3.6.1 Floating Point Data Conversion 3-24
3.3.6.2 Fixed Point Data Conversion 3-25
3.3.6.3 Alphanumeric Data Transfer 3-27
3.3.6.4 Editing Functions 3-30
3.3.6.5 Special Format Codes 3-31
3.3.6.6 N Format Specification 3-32
3.3.6.7 Carriage Control 3-33
3.3.6.8 I/O Transfer Length 3-33

3.4 Declaration Statements 3-35
3.4.1 Fixed Array Declarations 3-35
3.4.2 Variable Array Declarations 3-35
3.4.3 Array Storage 3-35
3.4.4 DIMENSION Statement 3-36
3.4.5 COMMON Statement 3-36
3.4.6 EQUIVALENCE Statement 3-37
3.4.7 Explicit Type Declarations 3-37
3.4.8 IMPLICIT Statement 3-39
3.4.9 DATA Statement 3-40
3.4.10 EXTERNAL Statement 3-41

3.5 Subprograms 3-4 3
3.5.1 Parameter Lists 3-43
3.5.2 Statement Functions 3-44
3.5.3 FUNCTION Subprograms 3-45

3.5.3.1 FUNCTION Statement 3-46
3.5.3.2 Function Calls 3-46

3.5.4 SUBROUTINE Subprograms 3-46

Table ol Contents Page 9

3.5.4.1 SUBROUTINE Statement 3-47
3.5.4.2 CALL Statement 3-47

3.5.5 RETURN Statement 3-48
3.5.6 Library Subprograms 3-48

3.6 Programs 3-49
3.6.1 PROGRAM Statement 3-49

3.7 Compilation Directive Statements 3-50

3.7.1 INCLUDE Statement 3-50

4 Compiler Operations 4-01

4.1 Compiler Requirements 4-01
4.1.1 TI-99 GPL Invocation 4-02
4.1.2 TI-99 GPL Compiler Example 4-02
4.1.3 MDOS FORTRAN Compiler Invocation 4-03

4.2 Compiler Execution 4-04
4.3 Compiler Listing 4-04
4.4 Allocation Map 4-04
4.5 Compiler Abort Errors 4-06
4.6 Source Statement Warnings 4-07
4.7 Source Statement Errors 4-08
4.8 Allocation Errors 4-12
4.9 Label Errors 4-13
4.10 Program Size Restrictions 4-13

5 Linker/Load/Run Operations 5-01
5.0 Introduction 5-01
5.1 LINKER 5-01

5.1.1 Operation 5-01
5.1.2 TI-99 GPL LINKER Operation 5-02
5.1.3 MDOS FORTRAN LINKER Operation 5-03
5.1.4 LINKER Map 5-04
5.1.5 LINKER Errors 5-05

5.2 LOAD Utility 5-08
5.3 RUN, RUN/DEBUG Utilities 5-09

5.3.1 TI-99 GPL Invocation 5-09
5.3.2 MDOS GENEVE Invocation 5-09
5.3.3 Execution Errors 5-11
5.3.4 Debugger Handled ErrorB 5-12
5.3.5 Execution Error Codes 5-10

6 Debugger 6-01
6.0 Introduction 6-01
6.1 Debugger Preparation 6-01
6.2 Debugger Memory Usage 6-02

6.2.1 TI-99 GPL Memory Usage 6-02
6.2.2 MDOS Memory Usage 6-03

6.3 General Syntax 6-04
6.4 Specifying Symbols 6-05
6.5 Debugger Commands 6-05

6.5.1 Load Task/Symbol/Source Files 6-06

Table of Contents Page 10

6.5.2 Select Module 6-08
6.5.3 Remove/Add Breakpoints 6-08
6.5.4 Memory Inspect/Change 6-11
6.5.5 Quit Command 6-15
6.5.6 Inspect or Change WP, PC, or SR 6-15
6.5.7 Trade Screen 6-16
6.5.8 Inspect/Change Workspace Registers 6-16
6.5.9 Hexadecimal Arithmetic 6-17
6.5.10 GO Program into Execution 6-18
6.5.11 X, Y, and Z Bias 6-18
6.5.12 Disassemble at Address 6-19
6.5.13 Viewing Source Files 6-20
6.5.14 Display Program Parameters* 6-21

7 FORTRAN Library 7-01
7.0 Introduction 7-01
7.1 FORTRAN Librarian 7-02

7.1.1 TI-99 GPL Invocation 7-02
7.1.2 MDOS Invocation 7-03
7.1.3 FORTRAN Librarian Listing Example 7-05

7.2 Mathematical Functions 7-06
7.3 Input/Output Routines 7-11

7.3.1 CALL OPEN 7-11
7.3.2 CALL CLOSE 7-12
7.3.3 CALL DELETE 7-13
7.3.4 CALL FILES 7-13
7.3.5 CALL BREAD/BWRITE (MDOS Only) 7-14

7.4 Graphics Interface 7-15
7.4.1 CALL GCHAR 7-15
7.4.2 CALL HCHAR 7-15
7.4.3 CALL VCHAR 7-16
7.4.4 CALL SCREEN 7-17
7.4.5 CALL COLOR 7-17
7.4.6 CALL CHAR 7-18
7.4.7 CALL CHARPA 7-18
7.4.8 CALL CLEAR 7-19
7.4.9 CALL SET32 7-19
7.4.10 CALL SET40 7-20
7.4.11 CALL SET80 7-20
7.4.12 CALL PRINTC 7-20
7.4.13 CALL CMDSTR 7-21

7.5 Sprites 7-22
7.5.1 CALL SPRITE 7-22
7.5.2 CALL SPCHAR 7-23
7.5.3 CALL MOTION 7-23
7.5.4 CALL POSITI 7-24
7.5.5 CALL DELSPR 7-24
7.5.6 CALL MAGNIF 7-25

7.6 Sound Routine 7-26
7.6.1 CALL SOUSTA 7-26

7.7 Keyboard and Joystick Subroutines 7-28

7.7.1 CALL KEY 7-28
7.7.2 CALL J0YST 7-29

7.8 Memory Access Subprograms 7-30
7.8.1 CALL VMBR/CALL VMBW 7-30
7.8.2 CALL LVMBR/CALL LVMBW (MDOS Only) 7-30
7.8.3 CALL LOADM 7-31
7.8.4 CALL VWTR/CALL VRFR 7-31
7.8.5 CALL GVIDTB 7-32
7.8.6 CALL CPMBR/CALL CPMBW (MDOS Only) 7-33

7.9 Miscellaneous Routines 7-35
7.9.1 CALL QUIT 7-35
7.9.2 CALL WAIT 7-35
7.9.3 IRAND Function 7-35
7.9.4 IVAL/VAL/DVAL Functions 7-36
7.9.5 CALL EXIT 7-36
7.9.6 CALL DELAY 7-37
7.9.7 CALL CHAIN 7-37
7.9.8 CALL LOCK (MDOS Only) 7-38

7.10 Extended Graphics Library 7-38
7.10.1 CALL SETMOD 7-38
7.10.2 CALL GETMOD 7-38
7.10.3 CALL SETPOS 7-40
7.10.4 CALL GETPOS 7-41
7.10.5 CALL SETVPG (MDOS Only) 7-41
7.10.6 CALL GETVPG (MDOS Only) 7-41
7.10.7 CALL SCRLUP/SCRLDN/SCRLLE/SCRLRI (MDOS Only)... 7-42
7.10.8 CALL SETBRD (MDOS Only) 7-43
7.10.9 CALL SETPAL (MDOS Only) 7-43
7.10.10 CALL SETPIX (MDOS Only) 7-44
7.10.11 CALL GETPIX (MDOS Only) 7-45
7.10.12 CALL SETVEC (MDOS Only) 7-46
7.10.13 CALL CLRSRC (MDOS Only) 7-47
7.10.14 CALL HBLKMV/HBLKCP/LBLKMV/LBLKCP (MDOS Only).. 7-46
7.10.15 CALL BLKSUP/BLKSDN/BLKSLE/BLKSRI (MDOS Only).. 7-48
7.10.16 CALL SETTWN (MDOS Only) 7-49
7.10.17 CALL GETTWN (MDOS Only) 7-50
7.10.18 CALL RESCHA (MDOS Only) 7-50
7.10.19 CALL SETMSE (MDOS Only) 7-51
7.10.20 CALL GETMSE, CALL GETMSR (MDOS Only) 7-51

7.11 DATE/TIME Library (MDOS Only) 7-53
7.11.1 CALL CHETIM/CHEDAT (MDOS Only) 7-53
7.11.2 CALL CONTTS/CONDTS (MDOS Only) 7-54
7.11.3 CALL CONSTT/CONSTD (MDOS Only) 7-54
7.11.4 CALL CONJUL (MDOS Only) 7-54
7.11.5 CALL RETDOW (MDOS Only) 7-55

7.12 MEMORY MANAGER Library (MDOS Only) 7-56
7.12.1 CALL RTFREE (MDOS Only) 7-56
7.12.2 CALL MALLOC (MDOS Only) 7-57
7.12.3 CALL RTPAGE (MDOS Only) 7-58
7.12.4 CALL MPLCPE (MDOS Only) 7-58
7.12.5 CALL RTMAPR (MDOS Only) 7-59

Table of Contents Page 12

8 Programming Examples 8-01
8.0 Introduction 8-01
8.1 99/9640 FORTRAN Programming Example 8-01

8.1.1 Compiling the Program 8-02
8.1.2 Linking the Program 8-03
8.1.3 Saving the Program 8-04
8.1.4 Re-Loading the Program 8-05
8.1.5 Spreadsheet Main Menu 8-05
8.1.6 Edit Values 8-05
8.1.7 Edit Logic Model 8-06
8.1.8 List 8-07
8.1.9 Print 8-08
8.1.10 Re-initialize 8-08
8.1.11 Save/Load 8-08
8.1.12 Calculate 8-09

8.2 9640 FORTRAN Demonstration Programs 8-10
8.2.1 DRIVERS : Sine Wave Plotting Program 8-10
8.2.2 FRACTALS : Fractalish Terrain Generator 8-10
8.2.3 FileZap : Sector Editor Utility Program 8-11

9 UTILITIES 9-01
9.1 Modify Preferences 9-01

9.1.1 Number of Lines/Page 9-02
9.1.2 32, 40, or 80 Column Default 9-02
9.1.3 Background/Foreground Colors 9-02
9.1.4 Character for Cursor 9-02
9.1.5 Default Label for Printer 9-02
9.1.6 Wild Card Label Binding 9-02
9.1.7 Default Files to Open 9-02
9.1.8 Disk Names 9-03
9.1.9 BOOT Disk Name 9-03
9.1.10 Library Disk Name 9-03
9.1.11 Printer 9-03
9.1.12 Saving Modifications 9-04
9.1.13 Using Modifications 9-04

A Appendix A-01
A. 1 Disk Contents A-01

A. 1.1 TI-99 GPL Implemenation A-01
A. 1.2 MDOS Implementation A-02

A.2 Character Codes A-03
A. 3 RADIX 100 Notation A-04
A.4 Programming Tips and Techniques A-05

A.4.1 inter-Program Communication A-05
A.4.2 Optimizing Object Code A-06

A.5 Screen Organizations (TI-99 GPL Implemenation Only) .. A-08
A.6 Assembly Language Subroutines A-09

A.6.1 Subprogram Structure A-09
A.6.2 Utilities A-10
A.6.3 Restrictions A-ll
A.6.4 Notes A-12
A. 6 . 5 Example A-12

Index 1-01

SECTION 1 - introduction Page 01-1

1.0 Introduction

This programming development package allows you to edit, compile, link,
and execute programs written in the FORTRAN language. The FORTRAN
language provided is a powerful subset of the FORTRAN 7 7 standard, and
has the following major features:

* Integer *1 (byte), Integer *2 (word), Integer *4 (longword),
Real *4, Real *8, and Logical *2 Data Types

* IF/THEN/ELSE/ELSEIF/ENDIF/DOWHILE/ENDDO Structured Programming
Statements

* Extended formatting commands for screen output

* Extended FORTRAN library for access to graphics, sprites, and
sound

* Optimizing FORTRAN compiler

* Two screen modes; Graphics (32 x 24) and Text (40 x 24) in
TI-99 implementation, Nine Screen modes in MOOS implementation.

* True 9900 object code generation (not a P-code compiler)

This manual describes the TI-99 implementation of the 99 FORTRAN
compiler, and also describes the MYARC GENEVE 9640 implementation of
the 9640 FORTRAN compiler. Differences between the two implementations
are noted in this manual.

The TI-99 implementation of 99 FORTRAN (sometimes called the GPL, or
Graphics Programming Language implementation) is supplied with three
single sided/single density disks, as follows:

1. The first disk (called the boot disk) contains the menu,
compiler, linker, execution support, and a save/load utility.

2. The second disk (called the Non-Math Library Disk) contains
the object for the non-Math related and integer math library
functions. It also has the example program source as discussed
in section 8.

3. The third disk (called Math Disk) contains the objects for the
full complete extended math library.

The MYARC Disk Operation System (MDOS) implementation of 9640 FORTRAN
is supplied with two double sided/single density diskettes, which
contain the following:

1. The first disk (called the boot disk) contains the editor, the
compiler, the linker, the system FORTRAN library, the graphics
FORTRAN library, and the symbolic debugger.

2. The second disk (called the library/demonstration disk)
contains the the math library, the FORTRAN librarian, and several

SECTION 1 - Introduction Page 01-2

example program sources.

This manual provides details on creating, editing, compiling, linking,
running, and debugging FORTRAN programs on your TI-99 or MYARC 9640
computer. It is divided into ten sections, as follows:

SECTION 1 - Contains this introduction, and how to get started
using the FORTRAN disks.

SECTION 2 - Describes the full screen editor used to prepare your
FORTRAN program source.

SECTION 3 - Contains a reference manual which details the syntax
of the FORTRAN programming language.

SECTION 4 - Describes the compiler operation, which details how
to execute the compiler, and possible error conditions.

SECTION 5 - Contains an operation manual for the LINKER (used to
create executable programs from compiled object), how to load and
run your FORTRAN programs, and possible execution time error
conditions.

SECTION 6 - Contains an operation and reference manual for the
FORTRAN symbolic debugger.

SECTION 7 - Describes the extensive FORTRAN library of
subroutines and FUNCTION subprograms.

SECTION 8 - Describes the FORTRAN programming example programs.

SECTION 9 - Describes the PREFERENCES utility, and how to setup
the 99 FORTRAN environment for you personal configuration and
tastes.

APPENDIX - Has miscellaneous tables and tips on getting the most
from the FORTRAN language.

To use the TI-99 implementation of 99 FORTRAN, you need at least the
32k memory expansion, and one disk drive, along with one of the
following command cartridges:

1. EDITOR/ASSEMBLER
2. MINI-MEMORY
3. EXTENDED BASIC
4. TI-Writer

To use the MYARC GENEVE implementation, you need a MYARC GENEVE 9640
with at least one double sided/single density disk drive.

A printer with associated interface is recommended for program
listings, but it is not reguired.

SECTION 1 - Introduction Page 01-3

1.1 Getting Started

It is recommended before using any of the disks provided that backup
disks be created using a disk manager utility. Use only the backup
disks during normal operation.

If you have a hard disk using the MYARC HFDCC, you may wish to place
the TI-99 implementation of the compiler in the directories:

WDS1.DSK.FORTCOMP.
WDS1.DSK.FORTLIBR.

Before using the FORTRAN compiler, the correct cartridge must be
inserted into the computer, the computer and associated memory
expansion must be on, and the boot disk must be in one of the disk
drives on the system.

1.1.1 Booting from Editor/Assembler or Mini-Memory (TI-99 GPL Mode)

1. Press any key to make the master selection list appear. Select "1"
for BASIC.

2. Type the following in BASIC:

OLD "DSK.FORTCOMP.LOAD-
RUN

3. Loading is automatic from this point on. After loading two files,
the FORTRAN master menu list will be displayed.

1.1.2 Booting from Tl-Writer (TI-99 GPL Mode)

1. Press any key to make the master selection list appear. Select "2"
for TI-Writer

2. Select item 3 (utility) on the Tl-Writer menu. This will cause the
messages:

ENTER FILE NAME?
DSK1.UTIL1

on the screen. If the boot disk is in drive 1, press enter. If not,
then edit the disk name (e.g. DSK2, DSK3, etc.) and press enter.

3. Loading is automatic from this point on. After loading two files,
the FORTRAN master menu list will be displayed.

1.1.3 Booting from EXTENDED BASIC (TI-99 GPL Mode)

1. Press any key to make the master selection list appear. Select "2"
for Extended Basic.

2. If the boot disk is in the first disk drive, the boot will be

SECTION 1 - Introduction Page 01-4

automatic. If it was not, type:

RUN "DSK.FORTCOMP.LOAD"

3. Loading is automatic from this point on. After loading two files,
the FORTRAN master menu list will be displayed.

1.1.4 Booting from MDOS Mode

There is no specific BOOT procedure for using the MDOS implementation
of 9640 FORTRAN, all functions within 9640 FORTRAN execute as normal
MDOS tasks.

Load up MDOS per your normal methods. A RAMDISK may be required by the
compiler if your individual source modules exceed about 200 to 300
source lines. Also, you must have at least 128kbytes spare memory to
use the FORTRAN linker.

The following is a recommended AUTOEXEC boot file which works well with
MDOS 1.14:

RAMDISK 110
ASSIGN E=DSK5:
MODE RS232/1:9600

This AUTOEXEC file creates a ramdisk of 110k (about 430 sectors),
assigns the RAMDISK to disk letter E:, and sets the mode of the RS232
port to 9600 baud.

Of course, this is only an example of how you might set up a RAMDISK.
Note, however, that certain compiler operations require a RAMDISK to be
set up as DSK5. Also, defining too large a RAM disk will create
problems when attempting to compile, link, or debug a FORTRAN program.

1.1.5 Description of MENU (TI-99 GPL Only)

After 99 FORTRAN has been booted, the menu list will be displayed on
the screen. Nine options are displayed as numbered selections:

99 FORTRAN

1 Edit 6 Librarian
2 Compile 7 Load
3 Link 8 USER
4 Run 9 Utilities
5 Run/Debug

On the bottom of the screen is a blinking underscore ("_"), which is
the cursor.

To execute a function, depress the number of the function desired and
press the ENTER button. For example, to edit a program, press "1" and

SECTION 1 - Introduction Page 01-5

the ENTER button. If you make a mistake in entering the function
desired, the backarrow (fctn/s) key can be used to delete the previous
bad entry.

Functions 1 (edit), 2 (compile), 3(link), 4(run), 5(run/debug),
6(librarian), 8(USER), and 9(Utilities) require that the boot disk be
present in one of the disk drives, if a different function was
previously executed. Failure to insert the boot disk before the option
is selected results in the message:

Input/Output Error
Press ENTER to Continue

To recover, press the "ENTER" button, and the function menu list will
be redisplayed.

1.2 Special Keys

The following key buttons are recognized by the FORTRAN system whenever
input is requested:

During any output to the screen, depressing control/S (XOFF) will stop
any output to the screen. Pressing control/Q (XON) will continue the
output.

When editing programs, other function keys are enabled. These keys are
described in section 2 of this manual.

Button Name Description

Fctn 6 PROCD Same function as ENTER.

Fctn 8 REDO Returns to the FORTRAN main menu.

Fctn 9 BACK Returns to the FORTRAN main menu.

Fctn = QUIT Returns to the master title (color bars) display.

Fctn S Back Deletes the previous character (if one was entered).
Arrow

ENTER - Enters the current data typed on the screen.

CTRL/C - MDOS - Aborts the program and returns to MDOS prompt

SECTION 2 - Editor Operation Page 02-1

2.0 Introduction

The EDITOR allows you to prepare source modules for input to the
FORTRAN Compiler. The TI-99 implementation of the editor is similar to
a reduced in scope Editor/Assembler Editor. The MDOS editor supplied
is a version of Clint Pulley's QDE Editor.

2.1 TI-99 (GPL Implementation) Editor

To execute the editor, select option number 1 on the main menu screen.
Selecting thiB option requires that the boot disk be present in one of
the disk drives, if the editor was not the last function executed.

After the editor is loaded, the editor menu selection list is
displayed:

99 Editor

Press:

1 To Load Program
2 Edit Program
3 Save Program
4 Purge Workspace
5 Display Statistics
6 Print File

Item 1 (load) loads an old file from the disk into main memory called
the workspace).

Item 2 (edit) allows editing the file which has been loaded, or a
new file.

Item 3 (save) saves a file which is in main memory (workspace) to
the disk.

Item 4 (purge) purges the file in memory.

Item 5 (statistics) displays statistics about the program currently
loaded in the workspace.

Item 6 (print file) prints a formatted listing of the program currently
loaded on the default printer or the user specified printer.

2.1.1 Load Program

A program on the disk requires loading before it can be edited. The
editor expects all files which are loaded to be of type sequential,
display, variable 80 character records.

Press 1 on the editor selection list to load an existing file. The
prompt:

ECTION 2 - Editor Operation Page 02-2

File to Load?

will be displayed on the screen. Enter the file name which is to be
loaded.

For example, entering:

DSK2.FORTSRC

will load the file FORTSRC located on disk drive 2 into main memory.

After loading, the selection list is redisplayed and you may select
another option. Each load removes the previous program in memory.

2.1.2 EDIT Program

The edit option allows you to edit the program currently in memory.
When the edit option is selected, the first 24 lines of the file are
displayed on the screen. If no program has been loaded, then the edit
option clears the screen so that you can start editing a new program.
The cursor is positioned at the upper left hand corner of the screen
and is followed by an end of data marker (>EOD). Press <ENTER> to
create a new line.

You may return from the edit mode back to the master selection list by
entering pressing the two keys function and back (FCTN/BACK)
simultaneously.

The program in memory will be lost if you exit the editor without
saving it.

In the edit mode, the screen is 80 columns wide with three overlapping
40 character windows available for displaying the text. You start in
the left most window with the first 40 characters of the display shown.
Pressing <next screen> moves the display to window number 2, with
columns 21 to 60 shown. Pressing <next screen> again displays window
number 3, with columns 41 to 80. Pressing <next screen> again displays
the first window.

If you have configured the FORTRAN system for 80 column mode operation
(see the Utilities MENU), then the screen is composed of a single
window of 80 characters, and the "next window" function key ie
inoperative.

The edit mode allows you to create, modify, and add text to the program
file. When you press a key, that character is placed on the screen in
the cursor position and the cursor moves one location to the right,
(if the cursor is at the right margin, it will not move to the right).
In addition, the edit mode has several special keys which perform
special edit functions. The following table shows these special keys:

Key Description

SECTION I - taitor uperation t-ayc yii.

<ENTER> Enters the text into the text buffer and places the cursor
at the 6tart of the next line. If ENTER is pressed at the
end of a file, a blank line is automatically inserted (be
fore the >EOD)

<arrow
keys>

The arrow keys (fctn/s, fctn/d, fctn/e, fctn/x) move the
cursor around the screen in the direction indicated.

In addition to the above keys, special function keys perform other
editing functions:

Fct Key Description

fl <delete
char>

f2 <insert
char>

f3 <delete
line>

Deletes the character at the current cursor position.
The remainder of the line is moved one character to
the left.

Moves the remainder of the line after the cursor one
space to the right, and places a blank character at the
current cursor position.

Deletes the line at the current cursor position.

f4 <roll up> Advances to the next page of 24 lines.

f5 <next
screen>

f6 <roll
down>

Advances to the next screen in sequence. If on the
last screen, returns to the first screen (inoperative
in BO-column mode operation.

Scrolls the screen down by 24 lines.

f7 <tab>

f8 <insert
line>

Advances the cursor (and screen) to the next column 7
in sequence.

Inserts a blank line at the current cursor position.

f9 <back> Returns to the editor selection list.

2.1.3 Save Program

After you have edited a file, it must be saved to the disk before it
can be compiled. To use the save function, select item 3 on the editor
editor selection li6t, and the prompt:

File to Save?

will be displayed. Enter the file name which will contain the edited
program.

SECTION 2 - Editor Operation Page 02-4

For example, entering:

DSK2.FORTSRC

will save the workspace contents to the file named FORTSRC in the
second disk drive.

2.1.4 Purge Workspace

The purge function allows you to clear the current workspace contents
in preparation for entering a new program. To select the purge
function, enter 4 on the editor selection list. The message:

Are you sure (Y/N)?

will be displayed. Entering a Y at this point will cause the workspace
to be cleared. Entering an N (or any other character except a Y) will
return you to the editor selection list without clearing the workspace.

2.1.5 Display Statistics

The statistics function will display the following statistics about the
program currently being edited (workspace):

1. Number of records.
2. Average record size (internal format).
3. Number of free bytes left.
4. Estimated number of records left.
5. Name of file which was last loaded.

Note that the editor has a maximum of 1000 records which can be in
internal storage at any time, regardless of the individual record size.

To use this function, select 5 on the editor selection list. After the
statistics have been displayed, the message:

Press ENTER to Continue

will be displayed. Depress ENTER to return to the editor selection
list.

2.1.6 Print Program

Selecting option 6 will allow you to print a program to a printer
device. When the Print Program item is selected, the question:

Enter Printer Name:
PIO

will be displayed. The printer name (PIO) will be whatever printer
name you have selected in the UTILITY preferences list (see section 9).
If the specified printer is ok, just hit enter. If you want the
listing to go to a different printer, type the new printer name over

SECTION 2 - Editor Operation Page 02-5

the old. For example, if you want the listing to go the the RS232
device at 4800 baud, then type:

RS232/1.BA=4800

and press enter. The following message will be displayed:

Printing, Hit any key to abort

and the printer will start printing. If you wish to abort the
printing, then press any key on the keyboard. Otherwise, the printout
will continue until completion, and the message:

Press ENTER to Continue

will be displayed. Press the ENTER key to finish.

2.1.7 Exiting the Editor

To exit the editor, press FCTN/BACK while on the Editor menu. The
message:

Are you sure (Y/N)?

will be displayed. Type a Y to exit. Any other character will return
you to the menu display.

Be sure to save your file to the disk before exiting the editor. Any
files which are not saved will be lost.

SECTION 2 - E d i t o r O p e r a t i o n Page 02-6

2.2 MDOS E d i t o r (QDE)

Included in the MDOS release of 9640 FORTRAN is Clint Pulley's Editor,
QDE. I have chosen to include QDE, rather than write yet another
editor.

Clint Pulley is providing good support for the QD Editor, and has given
me his kind permission to include it in the release of 9640 FORTRAN.
Clint has called the QDE editor the "Quick and Dirty" Editor. The user
shall see that there is nothing Quick and Dirty about Clint's Editor,
and I prefer to call it the Quality Dynamic Editor.

The reader should note that QDE is written in C99, not assembly or 9640
FORTRAN, and hopefully is the start of cooperative language
developments for C99 and 99/9640 FORTRAN using the TI-99 and MYARC
GENEVE.

The supplied version of QDE has been modified by LGMA Products for
standard FORTRAN tab stops as the alternate tab stop set (control/9)
instead of the Assembler tab stops.

Of course, the user can substitute any available editor for QDE, the
only reguirement is that it produce variable/80 card image formats.

QDE is Copyrighted 1988/1989 by Clint Pulley.

2.2.1 Introduction

QDE is an 80 column screen editor for native MDOS on the Myarc 9640
computer. It is based on a public domain editor of unknown authorship
which was written in C for MS-DOS on the IBM PC. The source code for
that editor has been converted to c99, all assembly language functions
have been rewritten, and numerous new features have been added. The
result is QDE, a text editor (NOT a word processor) which is well
suited for source program entry and the preparation of short documents.

QDE differs in many ways from the "standard" editor/word processor on
the 9640, MYWORD. Wherever possible similar control keys have been
used, but the internal design of QDE has led to a different approach
for many operations. The best way of learning QDE may be to try
everything on a test file, taking care to rename the output file or
remove the diskette.

Implementation of QDE on the 9640 reguired the use of direct screen
output (the "old-fashioned" way). The screen is completely rewritten
after each keystroke, and the inherent speed of the 9640 hardware
results in a flicker-free screen presentation. Unfortunately, the
screen output functions in MDOS are far too slow to be used in this
manner. As a result, QDE runs with interrupts disabled and may not
coexist with future multiprogrammed applications. Testing with MDOS
1.14 has not revealed any problems.

2.2.2 U6ing QDE

SECTION 2 - Editor Operation Page 02-7

QDE vl.8 requires 10 pages (81,920 bytes) of free memory. If a dual
mode system has been configured (the AUTOEXEC file contains a TIMODE
statement), set the RAMDISK size to allow sufficient free memory. The
CHKDSK command will display available memory.

Assuming that the diskette containing QDE and SD is in the default
drive, the editor is invoked from 80 column mode by the command line :

FQDE [filename] (any legal MDOS filename may be used)

(note: QDE is callable via the command FQDE instead of QDE.
The reason is that the version of QDE included on the FORTRAN
distribution disk has some slight modifications over the
standard QDE for FORTRAN tab stops).

If invoked without a filename, FQDE presents a blank screen for
editing. An output file name may be provided by using the "name output
file" function key. If invoked with a filename, FQDE checks for the
existence of the file. If it is not found, the user is queried for
permission to create. A negative reply results in an exit to MDOS
(allowing the user to recover from a misspelled filename), while a
positive reply causes the filename to be retained for subsequent saves
(the file is not created at this time). If the file is found it is
loaded into the text buffer and the first screen of the file is
presented for editing. The warning message "Input file truncated" is
displayed if the file is too long for the buffer.

2.2.3 Acknowledgement

Ralph Ford of Auburn, Alabama was kind enough to send me a copy of the
original editor some time ago, but QDE had to wait for the availability
of the Myarc 9640 computer and the MDOS implementation of c99.

2.2.4 QDE Function Key Usage

The ' character is used to indicate pressing the Control key together
with the indicated key.

The arrow keys are used for cursor movement.

Fl - Delete character under the cursor (also Del key)
*F1 - Oops! Recovers line altered by in-line editing
F2 - Start insert mode (terminated by any function key)
(also Ins key)
*F2 - Paragraph pack (stops at next line with space in the
first position)
F3 - Delete current line
"F3 - Undelete line (see note re use of delete buffer)
F4 - Page screen up (also Pg Up key)
"F4 - Roll screen down, retaining cursor position on screen
F5 - Display current editor status
"F5 - Duplicate current line
F6 - Page screen down (also Pg Dn key)
~F6 - Roll screen up, retaining cursor position on screen

SECTION 2 - E d i t o r Ope ra t i on Page 02-8

F7 - Split line at cursor position
"F7 - Join next line to current line
F8 - Insert blank line before current line
"F8 - Swap current and next line
F9 - Find string (prompts for search string)
"F9 - Find next string (uses previously
string)
F10- Replace

strings)
"F10- Replace next string (uses previously entered strings)

"9 - Toggle tab mode between normal (every 4 columns) and
FORTRAN (columns 7,37,73,80) tab- stops. (Note this is
different than the standard QDE).

entered search

string (prompts for search and replacement

'0 - Change screen color (4 sets)

"A - Append marked lines to end of capture buffer
"B - Move cursor to beginning of line
~D - Delete marked lines to capture buffer (rewrites buffer)
*E - Move cursor to end of line
"F - Show diskette directory (prompts for drive number [1-5J)
~G - Get file (prompts for filename)
"H - Backspace (deletes character under cursor)
"I - Tab to next tab stop (also tab key)
"K - Clear from cursor to end of line
"L - Set left margin at cursor position
"N - Name output file (prompts for filename)
"0 - Home cursor to screen upper left
*R - Rewrite capture buffer with marked lines (does not
delete)
"T - Transfer capture buffer to text buffer at current line
"U - Enter control character (the next character is biased by
-64)
*V - Move cursor to left margin
"W - Wipe text buffer and clear filename (prompts for
confirmation)
"X - Set mark for capture buffer functions (X marks the
spot!)
"Y - Reset left margin to position 1
"Z - Move to end of text buffer

Esc - If followed by second Esc, terminates editing and
prompts for file 6ave (uses filename from command line or ~N)
If output file errors occur, returns to editing

2.2.5 QDE Usage Notes

1. The TEXT buffer - This is the visible work area for the editor.
Files are loaded into and saved from the text buffer.

2. The DELETE buffer - QDE has a circular delete buffer. Deleted

SECTION 2 - Editor Operation Page U2-9

lines are copied into this buffer and may be retrieved (in reverse
order) with the

Undelete function key. This provides a useful method of moving a few
lines to another location in the text buffer.

3. The CAPTURE buffer - QDE has a linear capture buffer which can be
used to move larger blocks of text within a file or between files. The
function keys used for capture buffer operations are Set Mark (*X),
Append to Buffer ("A), Delete Marked (*D), Rewrite Buffer ("R) and
Transfer Buffer to Text (*T). A block of text is delimited by moving
the cursor to the first line in the block, pressing "X, then moving the
cursor to the last line of the block.

For single line operations, use of *X is not required. The operations
which move the marked block to the capture buffer are :

"A - Appends the block to the end of text already in the capture
buffer.
This operation does not delete the marked block from the text buffer.

"D - Replaces the contents of the capture buffer with the marked block
and deletes the block from the text buffer.

*R - Replaces the contents of the capture buffer with the marked block.
This operation does not delete the marked block from the text buffer.

The mark set by "X is cleared by "A, "D or ~R. Any capture buffer
operation which would exceed the buffer's capacity is not executed.

The contents of the capture buffer are inserted into the text buffer by
moving the cursor to the desired location and pressing 'T. The capture
buffer is not cleared by this operation, so multiple transfers are
possible. The capture buffer can be used for moving text between files
(ie. capture a block of text, get another file, and transfer text to
the new file).

4. Non-printing characters are generated by pressing "U which results
in the next character being placed in the text buffer biased by 64
(this results in the same character mapping as in MYWORD). If multiple
non-printing characters are required, "U must be pressed before each
character. The symbols displayed on the screen when non-printing
characters are present are those provided by MDOS's character pattern
definitions.

5. When entering large files, the status display should be checked
periodically to ensure that the text buffer does not become full. It
is good practice to leave 30-50 lines available to allow for future
expansion of the file. When the text buffer is full insertion of new
lines is inhibited so existing text is not lost.

6. A printed listing can be obtained by using *N to change the output

SECTION 2 - E d i t o r O p e r a t i o n Page 02-10

filename to the printer and then doing *S. The output filename should
be reset afterwards to avoid unwanted listings.

7. The paragraph pack function provides a very limited document
preparation capability. All lines from the current cursor location to
the line preceding the occurrence of a space in the first character
position are packed with as many complete words on a line as possible.
Lines at the end of the paragraph which become empty are cleared but
not deleted in this version of QDE.

8. QDE vl.8 buffer capacities are
lines, Capture - 64 lines.

Text - 560 lines, Delete - 5

9. QDE vl.8 uses the 26 row screen mode and multitasking capability of
MDOS and may not function correctly with system versions prior to 1.14.
The show directory function requires that the program image file "SD"
be on the default device.

10.The "display line numbers" screen mode of MYWORD could not be
implemented in QDE because of its text buffer/screen write design.

SECTION i - COMPILER Reference Manual Page 03-1

3.0 Introduction

The FORTRAN Compiler compiles the program prepared with the EDITOR into
an object module. A listing with interspersed object code, allocation
summaries, and label summaries can also be produced.

3.1 FORTRAN Statements

The basic unit of FORTRAN is a FORTRAN statement. A statement consists
of one or more lines of valid FORTRAN code.

3.1.1 Types of Statements

Each statement within a FORTRAN program or subprogram is one of the
following types:

1. Assignment statements assign values to variables. The values
can be numeric (of three precisions) or logical.

2. Input/Output statements direct information from/to your
program to a peripheral device, such as the screen or a disk
file.

3. Control statements control the flow of your program, either by
making decisions and executing conditional code, or unconditional
branches.

4. Declaration statements define the variables you will use in
your program, their sizes and attributes.

5. Identification statements identify a unit of compiled code,
and the parameters which are passed to and from the unit.

6. Comment statements are interspersed throughout the program,
and describe the flow and structure of the program.

3.1.2 Statement Format

The FORTRAN compiler expects certain items to be in certain columns of
the source line, as follows:

Column Contains an optional positive integer number used to label a
1-5: statement so that it can be referred to by other statements.

The statement label must be an integer value between 1 to
99999.

Statement labels may appear in any order, although it is
recommended for ease of debugging that they be placed in
ascending order.

Column 1: The letter 'C in column 1 indicates that the line is a
comment line. It will be printed in the source listing

SECTION 3 - COMPILER Reference Manual Page 03-2

Column 1

Column 6:

Columns
7-72:

but will have no other effect on the program.

The letter 'D' in column 1 indicates that the statement
is to be conditionally compiled.

If the option 'DM' was selected on the compile time
options menu, the statement will be compiled as a regular
FORTRAN statement.

If the option 'DM' was not selected on the compile time
options menu, the statement will be treated as a comment line.

Any character in column 6, other than a blank or a zero,
indicates that this line is a continuation of the previous
line. All statements, including comments and conditionally
compiled statements, may be continued in this manner.

Specify the FORTRAN statement. Statements may have blanks
inserted, as desired, to improve readabilty except within
quoted or hollerith fields.

An exclamation mark (1) encountered in the field means that
the rest of the line is to be ignored (treated as a comment),
as long as it is not contained within a Hollerith field.

If you have a preference for coding in lower case, FORTRAN
will translate all characters not within quotes to upper
case. For example, the statements:

IMPLICIT INTEGER(A-Z)
and

implicit integer(a-z)

are equivalent.

Columns
73-80: Are ignored by the compiler.

Blank lines encountered by the FORTRAN compiler are treated as comment
lines, i.e. as if they had the character 'C in column 1. The first
AND last lines of a program or subprogram may not be blank. The last
line of a program or subprogram may not be blank, or an I/O error
results during compilation.

3.1.3 Constants

Unlike BASIC, which has two types of constants (numeric and string),
FORTRAN has six types of constants:

A. Numeric Constants

1. Integer *1 (1 byte)
2. Integer *2 (2 bytes)
3. Integer *4 (4 bytes)
4. Single Precision (real *4, 4 bytes)
5. Double Precision (real *8, 8 bytes)

SECTION 3 - COMPILER Reference Manual Page 03-3

B. Logical Constants (2 bytes)

C. Hollerith Constants

D. Hexadecimal Constants

E. Octal Constants

F. Binary Constants

3.1.3.1 Integer Constants

Integer constants are written as a string of decimal digits, optionally
preceded by a sign. Leading zeros are ignored. The value of an
integer constant must lie in the range of -2147483648 to +2147483647.
An integer constant occupies two or four bytes of memory according to
its value, as follows:

-32768 to +32767 : Integer *2 Constant
-2147483648 to +2147483647 : Integer *4 Constant

3.1.3.2 Single Precision Constants

Single precision constants are written as a string of decimal digits,
optionally preceded by a sign, containing a decimal point and/ or
followed by a decimal exponent. A decimal exponent for a single
precision constant is written as the letter E followed by an integer
constant of the form described above.

Examples:

5.
15.4
+5E0
1.5E3
1.5E-3
-3.14159

The decimal exponent indicates the power of ten by which the number is
to be multiplied (scientific notation). This value may be zero. The
decimal point may be omitted if the decimal exponent is specified. It
is then assumed to lie to the right of the number.

A single precision constant has a precision of 5 digits, and a
magnitude of 1E-127 to 1E127. Any number of digits may be specified,
but only the most significant digits will be retained. A single

Examples:

240
+ 16
-100
1000000
0

SECTION 3 - COMPILER Reference Manual Page 03-4

precision constant occupies four bytes (two words) of memory.

3.1.3.3 Double Precision Constants

Double precision constants are written as a string of decimal digits,
optionally preceded by a sign, containing a decimal point and/or
followed by a decimal exponent (scientific notation). A decimal
exponent for a double precision constant is written as the letter D
followed by an integer constant of the form described above.

Examples:

5. DO
15.4D0
+5D0
1.5D3
1.5D-3
-3.14159D0
37D2

The decimal exponent indicates the power of ten by which the number is
to be multiplied. This value may be zero. The decimal point may be
omitted if the decimal exponent is specified. It is then assumed to
lie to the right of the number.

A double precision constant has a precision of 13 digits, and a
magnitude of 1D+127 to 1D-127. Any number of digits may be specified,
but only the most significant digits will be retained. A double
precision constant occupies eight byte6 (four words) of memory.

3.1.3.4 Logical Constants

There are only two logical constants, represented by the values TRUE
and FALSE. They take two bytes (one word) of memory, and are written
as:

.TRUE. and .FALSE.

3.1.3.5 Hollerith Constants

A Hollerith constant is a 6tring of ASCII characters. Any ASCII
character can be used. A Hollerith constant may be specified either by
placing the character string within quotes ('), or by preceding it with
nH, where n is the number of characters, including blanks, in the
character string.

Within a quoted string (but not an H string), the quote character
itself is represented by two consecutive quote characters. Note that
quote characters are not considered consecutive if they are seperated
by a blank.

A Hollerith constant occupies one byte of memory for each character,
and is stored left justified in its field. If necessary, a blank is

SECTION J - COMPILER Reterence Manual Page 03-5

added to the last byte to fill the last word.

Hollerith constants are evaluated to a constant type according to the
number of characters specified in the Hollerith string, according to
the following table:

1 character : Integer *1
2 characters : Integer *2
3 or 4 characters : Integer *4
5 to 8 characters : Double Precision (Real *8)

Examples:

•GA'
2HGA
'XYZ'
4HINT4
8HD.P.TYPE
•D.P.TYPE'
6H**YES*
•A*'B'

3.1.3.6 Hexadecimal Constants

A hexadecimal constant is a string of up to 16 hexadecimal digits
preceded by a quote and ended by a quote and the letter X ('X).
Alternately, the FORTRAN 77 form of the letter Z, followed by a quote,
the constant, and an ending quote may be used. A hexadecimal digit is
one of the characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F

A hexadecimal digit occupies 2 bytes of memory for each four digits,
and is stored right justified in its field. If necessary, zeros are
added on the left to fill the first word.

Hexadecimal notation is just a different way of specifying a numeric
constant, and may be used anywhere a numeric constant is used.

A hexadecimal constant is evaluated to a constant type according to the
number of digits specified in the constant, as follows:

1 or 2 digits : Integer *1
3 or 4 digits : Integer *2
5 to 8 digits : Integer *4
8 to 16 digits: Double Precision (Real *8)

Examples:

•123456'X (or) Z'123456'
•lBF'X (or) Z'lBF'
•0123456789ABCDEF'X (or) Z'0123456789ABCDEF'

3.1.3.7 Octal Constants

SECTION 3 - COMPILER Reference Manual Page 03-6

Octal constants are specified as the letter O, followed by a quoted
string containing valid octal disits zero (0) through seven (7). An
octal constant is evaluated to a constant type according to the number
of digits specified, as follows:

I to 3 digits
3 to 6 digits
6 to 11 digits
II to 22 digits

Integer *1
Integer *2
Integer *4
Double Precision (Real *8)

Valid octal constants would be:

0,1734*
0'7124316'

3.1.3.8 Binary Constants

Binary constants are specified as the letter B, followed by a quoted
string containing valid binary digits zero (0) and one (1). A binary
constant is evaluated to a constant type according to the number of
digits specified in the constant, as follows:

1 to 8 digits
9 to 16 digits
17 to 32 digits
33 to 64 digits

Integer *1
Integer *2
Integer *4
Double Precision (Real *8)

Valid binary constants would be:

B'lOOll1

B'10010001111001010001'

3.1.4 FORTRAN Names

FORTRAN names are used to identify variables, main programs,
subprograms, statement functions, and dummy arguments.

A FORTRAN name is one or more characters in length, but must begin with
a letter, and consist of string of letters, digits, dollar signs, and
underscores. Other characters are invalid. Only the first nine
characters of a variable are used. Imbedded blanks are ignored.

Examples:

GETPOINT
SAVEFILE
TI994A
BAD DATA
lowercase

Note that although lower case letters are allowed, 99/9640 FORTRAN
simply translates the statement to upper case (except for quoted
strings). Therefore, the variables "LOWERCASE" and lowercase are
exactly the same.

SECTION 3 - COMPILER Reference Manual Page 03-7

FORTRAN variables are either explictly declared (using an explicit
declaration statement such as REAL, INTEGER, etc.) or if no explicit
declaration exists, implicitly declared according to the following
rules:

1. If the name begins with a letter declared in an IMPLICIT
statement, the variable will be assigned the type declared in that
statement.

2. If the name begins with letter I, J, K, L, M or N, the variable
will be assigned the type of integer.

3. If the name begins with any other letter, the variable will be
assigned the type of Single Precision.

where:

i is an integer scalar variable
j and k are constants

3.1.5 FORTRAN Variables

All variables must be given a name. A variable's value is allowed to
change during program execution (although it does not necessarily have
to). The data type of the variable describes the type of data the
variable represents. For example, an integer variable represents
integer data.

A variable name can represent a single value or an array of values.

Single variables need not be declared as single; they are defined from
context when they are used. Array variables must be declared using the
INTEGER, REAL, DOUBLE PRECISION, or DIMENSION.

3.1.6 Arrays and Subscripts

An "array" is a set of data elements which are identified by a single
variable name. The array name and its bounds must be declared in a
DIMENSION statement, in a dimensional COMMON statement, or a type
specification statement.

Subscripts are used to reference particular elements of the array.
When used, the subscript list must follow the array name and be
enclosed in parenthesis. The subscript list is a seguence of integer
expressions seperated by commas. A subscript expression must have one
of the following forms:

i
k
j+/-k
j*i
j*i+/-k

SECTION 3 - COMPILER Reference Manual Page 03-8

3.1.7 Subscripted Variables

A single element of an array are referred to by forming a subscripted
variable. This variable consists of the array name followed by a
subscript list. The value of the subscripts determine which element of
the array is being referenced. The number of subscripts associated
with the variable must equal the number of subscripts defined in the
DIMENSION statement for the array, or a compilation error will result.

Examples:

A(2)
K(I,1+2,1+3,6)
PI(J+2,7*K)

A subscript expression MUST be evaluated to type integer *2 in the
current version of 99/9640 FORTRAN.

3.1.8 Expressions

Expressions appear on the right hand side of an equals sign (=), and
consist of constants, operators, parentheses, variable names, and
function references. There are three types of expressions, numeric,
relational, and logical.

3.1.8.1 Numeric Expressions

Numeric expressions consist of numeric constants, numeric variables,
function references, and the numeric operators for addition (+),
subtraction (-), multiplication (*), division (/), and exponentiation
(**)•

The minus sign (-) and plus sign (+) may be used in their unary form as
well as with addition and subtraction. As unary operators, the plus
sign (+) has no effect, while the minus sign (-) reverses the sign of
the expression that follows it.

All expressions yield a single numeric value.

Numeric operations are performed in a hierarchal order. The highest
order operators (those which are performed first) are the unary
operators (+ and -) , followed by exponentiation, followed by
multiplication and division, and then by addition and subtraction.
Parentheses may be used at any time to alter the order of hierarchal
operation.

Operands in a numeric expression may be of type integer, single
precision, or double precision.

The following are examples of numeric expressions:

4/2
4.0/2.0
2.0*PI*R

SECTION 3 - COMPILER Reference Manual Page 03-9

A**2+B**2-C

FORTRAN does allow mixed types of numeric modes within the same
expression, such as mixing integer values with single precision values,
integer with double precision, etc. When this situation occurs, a
warning is issued by the compiler (mixed mode arithmetic), and the
lower type items in the expression are converted to the higher types.
For example, the expression:

1/2.0

would be evaluated as type single precision, not integer, due to the
single precision constant 2.0.

3.1.8.2 Relational Expressions

Relational expressions are used in IF statements, DO WHILE statements,
and logical expressions. They consist of numeric expressions seperated
by relational operators. The result of a relational expression is
always a single value of TRUE or FALSE.

The relational operators are:

Operator Definition

.GT. Greater than (>)
•GE. Greater than or Equal To (>=)
.LT. Less Than (<)
•LE. Less Than or Equal To (<=)
.EQ. Equal To (=)
.NE. Not Equal To (<>)

The enclosing periods are part of the relational operators and must
appear.

Examples:

3.LT.10 is true
A.EQ.2.*B could be true or false, depending on the values of

A and B

Logical expressions are evaluated from left to right, after all numeric
operations have been completed.

3.1.8.3 Logical Expressions

Logical expressions are used with relational expressions. The logical
operators are:

Operator Definition

.AND. True if left and right operands are both true.

.OR. True if left and right operands are both true.

.EOR. True if either left or right operand is true, but

SECTION 3 - COMPILER Reference Manual Page 03-10

not both
.NOT. True if operand following is not true.

Examples:

.NOT. K is true if K is false
L.AND.N is true if L and N are true

When parenthesis are omitted, logical expressions are evaluated in the
following order:

1. arithmetic expressions
2. relational expressions

3. Logical operators in the order of .NOT., .AND., .OR., and .EOR..

Operations of the same order are performed left to right.

Parenthesis always override the hierarchal order of operations.

For example, the statement:

N.EOR..NOT.M.AND.R.LT.S

is the same as writing:

N.EOR.((.NOT.M).AND.(R.LT.S))

Section 3 - COMPILER Reference Manual Page 03-11

3.2 Assignment Statements

An assignment statement assigns a value to a variable. Assignment
statements include arithmetic and logical type assignments.

3.2.1 Arithmetic Assignment Statements

General Form:

a = b

where:

a is a variable (scalar or array) whose type is integer, real,
or double precision, and

b is an arithmetic expression

The expression on the right is evaluated and the resulting value is put
into the variable on the left. The value of b replaces the value
currently associated with variable a. For example:

L = L + 1

specifies that the new value of L is to be the current value of L
incremented by 1.

If the data type associated with b differs from that associated with a,
the value of b is converted automatically to the type associated with
a. For example, a real value can be rounded to the nearest integer by
the following:

I=D+.5

where D is a single precision variable, and I is an integer variable,
.5 will be added to D, and the fractional part is truncated and stored
into the integer value I.

Examples:

K = K + J
D = P(I,J)+SIN(T)
ARRAY(K) = 2.0*-R+(P/3.0)

3.2.2 Logical Assignment Statements

General Form:

a = b

where:

a is a variable (scalar or array element) whose type is logical,
and

Section 3 - COMPILER Reference Manual Page 03-12

b is a logical expression

Examples:

LOGICV = .FALSE.
L=B.GT.100.
V(I)=(R.EQ.T).AND.(B.LT.100.)

3.2.3 Control Statements

Control Statements allow you to govern the order of execution of the
program statements.

3.2.3.1 GO TO Statements

GO TO statements transfer control forwards or backwards within a
program. FORTRAN has two forms of the GO TO statement, unconditional
and conditional.

3.2.3.2 Unconditional GO TO Statement

General Form:

GO TO n

where n is a statement label

This statement transfers control to statement labeled n.

For example:

GOTO 1000

will cause control to be transferred to the statement labeled 1000.

3.2.3.3 Computed GO TO Statement

General Form:

GO TO (nl, n2, ... , nm), a

where:

nl, n2, •••, nm are statement labels and

e is any integer, single precision, or double precision
expression.

The arithmetic expression a is converted to integer (truncated), and
becomes a pointer as to which statement label nl,n2,...,nm is branched
to. If a is 1, then statement label nl is performed next. If a is 2,
then statement label n2, etc. If the value of a is outside the number

Section 3 - COMPILER Reference Manual Page 03-13

of labels specified (less than 1 or greater than m), then the next
statement is sequence is performed.

Examples:

GO TO (1000, 1100, 1200), L

would cause a branch to statement 1000 if L was 1, a branch to
statement 1100 if L was 2, a branch to statement 1200 if L was 3. If L
was neither of these values, the next statement would be performed.

GO TO (1000, 1100, 1200), X

would cause a branch to statement 1000 if X was greater than or equal
to 1.0 and less than 2.0, a branch to statement 1100 if X was greater
than or equal to 2.0 and less than 3.0, a branch to statement 1200 if X
was greater than or equal to 3.0 but less than 4.0. If X was outside
any of these ranges, then the next statement would be performed.

Note that real values are truncated, not rounded.

3.2.4 IF Statements

IF statements are conditional transfer statements used to change the
normal path of program execution based on an arithmetic or logical
expression. There are three forms of the IF statement, arithmetic,
logical, and structured.

3.2.4.1 Arithmetic IF Statement

General Form:

IF (a) nl,n2,n3

where:

a is an arithmetic expression

nl, n2, n3 are statement labelB

Control is transferred to the statement labeled nl,n2, or n3 if the
value of the expression a is negative, zero, or positive, respectively.

Example:

IF (B(I) - PI) 100, 400, 300

If the value of the above expression is negative, control will transfer
to statement label 100, if it is zero it will transfer to statement
label 400, if it is positive it will transfer to statement label 300.

In an arithmetic IF statement, all three statement labels must be
supplied, however, any two may be the same.

Section 3 - COMPILER Reference Manual Page 03-14

3.2.4.2 Logical IF Statement

General Form:

IF (a) s

where:

a is a logical expression, and

s is any valid executable FORTRAN statement, except a DO
statement or another logical IF statement.

If the value of a is true, statement s is executed, and the computer
will jump to the next sequential statement. If the value of a is
false, the computer will jump to the next sequential statement.

Examples:

IF (LOGIC1 .AND. LOGIC2) PI=3.14159
IF (I .EQ. J) GOTO 200
IF ((A.NE.B) .AND. (J.LT.2)) GOTO (100,200,300),K
IF (I) CALL DELSPR(l)

3.2.4.3 Structured IF Statement

General Form:

IF (a) THEN
si

ELSEIF (b) THEN
s2

ELSE
63

ENDIF

where:

a and b are logical expressions

sl,s2,s3 are valid FORTRAN executable statements

The IF statement, as shown above, must be followed by the single
keyword THEN. If the value of a is true, control is transferred to the
statement or group of statements following the IF statement.

After the IF .. THEN and associated group of statements, is an
optional keyword ELSEIF. If the value of the logical expression b is
true, control is transferred to the next statement or group of
statements.

After the ELSEIF .. THEN and associated group of statements, follows
an optional keyword ELSE. If the value of the logical expression b is
false, control is transferred to the next statement or group of
statements.

Section 3 - COMPILER Reference Manual Page 03-15

Following the ELSE keyword, is the required statement ENDIF. This
keyword terminates the IF .. THEN .. ELSEIF .. ELSE .. structure.

One restriction in the structured if, is that do loops are not allowed
to extend to the middle of the IF .. ENDIF structure. For example:

DO 1000 1=1,10
IF (I .EQ. 0) THEN

1000 CONTINUE
ENDIF

is invalid, and will cause a compilation error (illegal doloop).

Example 1:

IF (I .GT. 0) THEN
1 = 1 + 1
X = SIN(Y)

ENDIF

In the above example, if I is greater then 0, then control is
transferred to the next group of insructions. If I is not greater than
0, then control is transferred to the ENDIF statement.

Example 2:

IF (I .GT. 0) THEN
1 = 1 + 1

ELSEIF (J .LT. 2) THEN
J = J + 1

ELSE
K = K + 1

ENDIF

3.2.5 DO Statement

General Form:

DO n v=al,a2[,a3]

where:

n is a statement label

v is a non-subscripted variable, and

al,a2,a3 are arithmetic expressions

The DO statement allows repetitions of all of the statements up to and
including the statement n, until the value s is greater than or equal
to that of the value a2. The value of v is initially set to that of
al, the body of the DO statements execute, the value of v is
incremented by a3 (or 1 if a3 is not specified) and compared to that of
a2. If the value of a is less than that of a2, then the loop repeats
with the new value of v, else the loop terminates

Section 3 - COMPILER Reference Manual Page 03-16

Note that in this version of 99/9640 FORTRAN, the variable s and
arithmetic expressions al, a2, and a3 can be any type of integer or
real.

For example, the statements:

J=0
DO 10 1=1,100

10 J=J+I

will perform a summation of the numbers from 1 to 100, and leave the
result in the variable J.

Throughout the range of the DO, the index variable v is available for
computation, and can be used as a value either for calculation or, if
it is an integer *2 variable, as a subscript variable. If you change
its value in the DO loop, the number of loop iterations will be
affected.

When a DO loop is exited, either when the value is satisfied or when a
control transfer statement in range of the DO is executed, the index
variable will have the last value attained. If the loop has been
satisfied, this will be greater than that of a2.

The expressions al, a2, a3 are the controls of the DO loop and should
not be altered within the range of the DO.

You may branch out of a DO loop using any control transfer instruction,
but you may not branch directly into a DO loop using these statements.
The results of doing this are unpredicable since the index is not
properly initialized.

The statement which terminates a DO loop cannot be one of the
following:

DO
GO TO
Arithmetic IF
Structured IF
DO WHILE/ENDDO
STOP
PAUSE
RETURN

3.2.6 CONTINUE Statement

General Form:

CONTINUE

This statement is a dummy statement which merely transfers control to
the next executable statement in sequence. It is primarily used as a
target point for transfers, particularly as the last statement of a DO
loop which would otherwise end with a prohibited statement.

Section 3 - COMPILER Reference Manual Page 03-17

3.2.7 DO WHILE/ENDDO/REPEAT Statements

General Form:

DO WHILE (a)
s

ENDDO

or

DO WHILE (a)
s

REPEAT

where:

a is a logical expression, and

s is a valid FORTRAN statement or group of statements.

The structured DO WHILE/ENDDO or DO WHILE/REPEAT constructs execute the
body of the DO loop while the logical expression a is true. For
example:

1= 0
DO WHILE (I .LT. 100)

K = I * K
1 = 1 + 1

REPEAT

In the example above, the DO WHILE statement governs a loop. The loop
will execute 100 times until i equals 100.

The test on logical expression a occurs at the start of the loop, so if
the logical expression a is false at the start of the DO WHILE loop,
the loop will not be executed. For example:

1 = 0
ENDLOOP = .FALSE.
DO WHILE (ENDLOOP)

1 = 1
ENDDO

In the above example, the value of I at the end of the do loop will be
0, not 1, since the value of ENDLOOP was false at the start of the
loop.

Note that the REPEAT and ENDDO statements perform exactly the same
function, they are the end of the range for the DO WHILE loop.

3.2.8 PAUSE Statement

General Form:

PAUSE [i]

Section 3 - COMPILER Reference Manual Page 03-18

where i is an integer constant.

The PAUSE statement causes temporary suspension of the program
execution and causes the messages:

* PAUSE i

Press ENTER to Continue

to be displayed on the screen when the statement is executed. The
value i is displayed in decimal.

The constant i need not be specified. If it is omitted, a value of 0
is assumed. *

3.2.9 STOP Statement

General Form:

STOP [i]

where i is an integer constant.

The STOP statement is used to indicate the logical end of a program
when it does not coincide with the physical end. This statement
terminates the execution of a running program. When execution
terminates, the message:

* 9640 FORTRAN Stop
or

* 99 FORTRAN Stop
Press ENTER to Continue

will be displayed on the screen. The optional value i is displayed in
decimal. In 99 FORTRAN, pressing ENTER will cause a return to the
FORTRAN Menu. In 9640 FORTRAN, the program automatically returns to
the MDOS prompt.

To eliminate the STOP message when a FORTRAN program terminates, use
the CALL EXIT library subroutine call (see chapter 7).

3 .2 .10 END Statement

General Form:

END

The END statement indicates the physical end of the program. Each
program, subroutine subprogram, or function subprogram must contain an
end statement as the last statement. If control passes to the END
statement, it will behave in the same manner as a STOP or RETURN
statement.

3.3 Input/Output Statements

Input/ Output statements are one of three types:

- READ Statements
- WRITE Statements
- FORMAT Statements

READ and WRITE statements define the data which is to be transferred,
the format number which is to be used for the transfer, the device
number, and what to do in case of error or end of file conditions.
FORMAT statements define how the data is to be transferred.

3.3.1 READ Statement

General Form:

READ (i, n [,keysj) variable list

where:

i is an arithmetic expression, of type integer, which designates
the input/ output FORTRAN unit number. It must not be zero and
must be either 6 (for the screen), or a number used in a CALL
OPEN statement.

n is the label of a FORMAT statement or the name of an array
which contains the format specification.

keys is an optional list of keyword parameters which define
special case information about I/O operation, and

variable list is an optional list of variables to be
transferred.

The keyword parameters, which can appear in any order, are:

END=j where j is the label of a statement to which control is to be
transferred if an end of file condition occurs on a disk file, or the
characters >EOD are typed in on the screen.

ERR=k where k is the label of a statement to which control is to be
transferred if an I/O error occurs.

REC=i where i is an arithmetic expression, evaluated as type integer,
which indicates the number of the record to be accessed from a random
file.

STATUS=m where m is an integer scalar variable into which status
information is to be stored if an I/O error occurs.

The READ statement transfers ASCII data from the device specified by i
under control of format n. If n specifies an array, the array must
contain a valid format specification, beginning with the initial left
parenthesis and terminating with the final right parenthesis.

-SECTION 3 - COMPILER Reference Manual Page 03-19

SECTION 3 - COMPILER R e f e r e n c e Manual P a g e 0 3 - 2 0

E x a m p l e s :

READ (6 , 10) A,B
READ (J , FORMT, END=599, ERR=388, STATUS=J) (K (I) , 1 = 1 , 1 0)

3 . 3 . 2 WRITE S t a t e m e n t

G e n e r a l Form:

WRITE (i,n [,keys]) variable list

where: i,n,keys and list are as defined above for the READ statement.

The WRITE statement transfers ASCII data to the device specified by i
under control of format n. If n specifies an array, the array must
contain a valid format specification, beginning with the initial left
parenthesis and terminating with the final right parenthesis.

Examples:

WRITE (6, 20) A,B,C
WRITE (IDEVICE, 9100, REC=I, ERR=1000) A,B,C
WRITE (6, FORMT, ERR=100, STATUS=J, END=400) (ARRAY(I),1=1,10)

3.3.3 Variable Lists

READ and WRITE statements generally require a list of variables to be
transmitted.

A variable list can merely contain variables (subscripted or
non-subscripted) seperated by commas. For example:

READ (6, 2) A,B,C,J(J),M(2,2),K

A variable list can also specify array variables which may be indexed
and incremented in the same manner as a DO loop. These array variables
and their indexes are enclosed in parenthesis to seperate them from
other variables in the list. For example:

WRITE (6, 400) J, (X(K),K=1,100), L

Initial (ml), limit (m2), and step (m3) values for index variables are
specified in the DO statement. If the step value is not specified, 1
is assumed. As for DO statements, unlimited nesting of indexing is
allowed. For example, if K is a 2x3 array, the statement:

READ (1,100) ((K(I,J),I=1,2),J=1,3)

will cause the data values to be transmitted into the elements of the
array in the following order:

K(1,D
K(2,l)
K(l,2)

SECTION 3 - COMPILER Reference Manual Page 03-21

K<2,2)
K(l,3)
K(2,3)

When the entire array is to be transmitted, the indexing may be
omitted, and only the array name written. Values are transmitted to or
from the the array in order of increasing subscripts, with the leftmost
subscript varying most rapidly. Thus, the preceding example could have
been written

READ (1,100) K

In READ statement I/O lists of the form M, A(M) or M,(A(I),1=1,M), the
value of M is read before processing begins for array A. Thus, the
subscript calculation or DO limit check uses the newly read value for M
rather than its former value. For example, the statements:

M = 3
READ (1,100) A(M), M

will read a new value for A(3), and then a new value for M, whereas the
statement:

READ (1,100) M,A(M)

will read a new value for M, and then use that value to determine which
element of A should receive the next value.

3.3.4 Input/Output Device Unit Assignments

The parameter i in input/ output statements specifies the physical
device involved in an I/O operation. Physical devices are specified as
FORTRAN unit numbers specified in CALL OPEN statements. Also, there
are two unit numbers which are opened for you, as follows:

Device 6 - Is always assigned to the CRT (aka SCREEN or
Console)
Device 9 - Is assigned to the default printer.

In the MDOS implementation of 9640 FORTRAN, device 9 is assigned to the
PRN: device. In the TI-99 GPL implementation, device 9 can be changed
to another unit number, and its default printer name assigned using the
Preferences Utility (see section 9 of this manual).

The parameter i can also be specified as an asterick (*). In this
case, the wild-card unit number in the preferences section is used to
determine the device number. In this way, a program can be coded with
wild card input and output, and have its input/output assignment
changed externally using the Preferences utility. For MDOS, the
default device is always assigned to device 6, the CRT.

Examples:

WRITE (3, 100) X
WRITE (6, 100) X

SECTION 3 - COMPILER Reference Manual Page 03-22

READ (*, 100) X

specifies input/output on devices 3, 6, and the wild card unit number
(*) specified in the Preferences Utility. It is assumed here that
device 3 was previously opened in a CALL OPEN statement.

SECTION 3 - COMPILER Reference Manual Page 03-23

r (si, s2, . . ., Ss)

where:

r is a repeat count of the form described below, and

sj is as described above; in other words, nested repetitions are
allowed (up to three levels)

Each FORMAT statement must be given a statement label so that it can be
referenced by a READ or WRITE statement.

3.3.6 FORMAT Specifications

A FORMAT specification may have any of the following forms:

rFw.d
rZw
rLw

rlw
rRw
nHs

rAw
r/
rX

r's'
rCi
Mi. j

rEw.d
rDw.d
rQ

The characters F,E,D,I,Z,L,A,R,H, quote('), slash(/),X,C,M and Q define
data conversion, editing, and format control.

r is an optional unsigned integer constant which indicates that
the specification is to be repeated r times (if omitted, 1 is
assumed).

w is an unsigned integer constant which defines the total field
width in characters of the external representation of the data
being processed (including digits, signs, decimal point,
exponent and blanks).

d is an unsigned integer constant which specifies the number of
decimal digits which appear to the right of the decimal point in
the real data being processed.

i is an unsigned integer constant which qualifies the format

3.3.5 FORMAT Statements

FORMAT statements are used in conjunction with READ and WRITE
statements to process ASCII records. Format specifications with the
FORMAT statement define record layout and specify the conversions to be
performed between internal and external data representations. The
FORMAT statement i6 a non-executable statement, and may appear anywhere
in a program.

General Form:

label FORMAT (SI, S2, ..., Sn)

where:

Si is a format specification of one of the forms described
below, or a repeated group of such specifications in the form:

SECTION 3 COMPILER Reference Manual Page 03-24

specification (see descriptions of C and M specifications)

n is an unsigned integer constant which specifies the number of
characters following an H format specification. s is a string
of ASCII characters, and

j is an unsigned integer constant which qualifies the W format
specification.

3.3.6.1 Floating Point Data Conversion

The F,E and D Format specifications are used to specify single or
double precision data transfer. On input, these specifications are
identical, and may be used interchangeably. On output, they differ
only in the way that the data is to be represented; either single or
double precision data may be output under any of these specifications.

F Format (Fixed Decimal Point) rFw.d

Input - The input field has an overall width of w characters. It may
contain an optional sign, a string of digits with or without a decimal
point, and an optional exponent. A blank in the input will terminate
the field. A blank field will be read as a zero.

An exponent may be specified by one of the characters E, D, + or -,
followed by a string of digits. If E or D is used, a sign may appear
before the digit string. The exponent specifies the power of 10 by
which the number is to be multiplied.

For example, using F8.2 format:

802142 on input is converted to 802142.0
.34 2 on input is converted to .34

-7.El on input is converted to -70.0
614D+2 on input is converted to 61400.

Output - Internal values are output right justified in the w character
field, preceded by blanks. For F conversion, the field width w should
provide space for the following:

1. A sign, "-", if the number is negative, blank if positive.

2. At least one digit before the decimal point, with the maximum
depending on the magnitude of the number. If the magnitude of the
number is less than 1, a zero will appear.

3. A decimal point.

4. d digits after the decimal point

If the field width is not sufficient, characters are truncated from the
left. In general, for F conversion w should equal at least d +3.

SECTION 3 - COMPILER Reference Manual Page 03-25

For example, for the specification F8.3:

273.4 internally appears on output as 273.400
-.003 internally appears on output as -0.003

442.30461 internally appears on output as 442.305
-92745.0 internally appears on output as 2745.000

E Format (Normalized with E Exponent) rEw.d

Input - Same as with F format.

Output - The number, with its exponent, is output right-justified in
the w character field, preceded by blanks. For E conversion, the field
width w should provide space for" the following:

1. A sign

2. A decimal point preceded by zero.

3. d digits following the decimal point.

4. A four character exponent.

If the field width is not sufficient, characters are truncated from the
left. In general, for E conversion, w should equal at least d +7.

For example, for the specification E10.3:

283.0 internally appears on output as 0.238E+03
-.002 internally appears on output as -0.200E-02
0.0 internally appears on output as 0.000E+00

19732.4 internally appears on output as 0.197E+05

D Format (Normalized with P Exponent) rDw.d

Input - Same as E Format

Output - Same as for E Format, except that the exponent is specified by
the letter D instead of E.

For example, for the specification D10.3:

283.0 internally appears on output as 0.238D+03
-.002 internally appears on output as -0.200D-02
0.0 internally appears on output as 0.000D+00

19732.4 internally appears on output as 0.197D+05

3.3.6.2 Fixed Point Data Conversion

The I, L, and Z format codes specify the transfer of fixed point data.
I format specifies the transfer of integer data, and L format specifies
the transfer of logical data. Z format specifies the transfer of any
data type in the ASCII representation of its internal hexadecimal

SECTION 3 - COMPILER Reference Manual Page 03-26

format .

I For ma t .(_Intecjerj r I w

Input - The optionally signed integer number in the w character input
field is converted to internal format. A blank in the input field will
terminate the field. For example, under 15 format:

bb325 on input is converted to 325
+12bb on input is converted to 12

(b is ASCII blank)

Output - The integer value is output right-justified in the w character
field, preceded by blanks. A negative value is preceded by a minus
sign. If the field width w is insufficient, characters are truncated
from the left. For example, under 15 format:

312 internally appears on output as 312
-5 internally appears on output as -5

L Format (Logical) rLw

Input - The first T or F encountered in the w character input field
will be read as "true" or "false", respectively. All other characters,
including blanks, are ignored. If the input field contains neither T
or F, a false value will be returned. For example, under L6
processing:

bbTRUE will be read as "true"
FALSE will be read as "false"

(b is ASCII blank)

Output - The values "true" and "false" are represented on output as
TRUE or FALSE, right justified in the output field. For example, under
L6 format control:

TRUE internally appears on output as TRUE
FALSE internally appears on output as FALSE

Z Format (Hexadecimal) rZw

Input - The ASCII representation of the hexadecimal string in the w
character field is converted to the corresponding 4-digit per word
hexadecimal number. This number is then stored in the specified input
variable. If the input number contains fewer digits than the variable
reguires, it will be padded on the left with zeros. If the input
number contains too many digits, only the rightmost n digits will be
used, where n is associated with the variable's data type as follows:

SECTION 3 - COMPILER Reference Manual Page 03-27

Data Type Byte Size n

Integer *1 1 2
Integer *2 2 4
Integer *4 4 8
Single Precision 4 8
Double Precision 8 16

Blanks in the input string are treated as zeros.

For example, under Z2 format control storing to an Integer *2 variable,
the value 2A would be stored internally as '002A'X, or decimal 42.

Output - The internal hexadecimal number is converted to ASCII and
inserted right justified in the w character field. If w exceeds the
number of digits associated with the variable, the output field will be
padded with blanks on the left. If the field width w is insufficient,
characters will be truncated from the left.

Example:

WRITE (6, 70) I,X,Y
70 FORMAT (IX,Z2,Z10,Z8)

Internal Values:

I=002A, X=402CDF01, Y=0006FD23

Output Record:

2A 402CDF010006FD23

3.3.6.3 Alphanumeric Data Transfer

The A, R, and H format specifications allow the transfer of data
without any conversion. These specifications are generally used with
ASCII information. The A and R specifications transfer information to
or from the I/O list variables; the H specification transfers
information to or from the specification itself.

A Format (Alphanumeric) rAw

Input - The characters in the w character input field are stored in the
specified variable without conversion.

If w is less than the number of characters the variable can hold (1
for integer *1, 2 for integer *2, 4 for integer *4, 4 for single
precision, and 8 for double precision), the characters are left
justified in the variable and padded on the right with blanks. If w is
greater, only the right-most characters are used. Input characters are
always stored in the variable from left to right.

Example:

SECTION 3 - COMPILER Reference Manual Page 03-28

READ (6, 50) I,ALPHA
50 FORMAT (2A3)

Input Record: ABCDEFG

Internal Values: I=,BC,/ ALPHA='DEF •

Output - The contents of the specified variable are to be transferred
to the w character field without conversion. If w exceeds the number
characters contained in the variable, the output characters will be
right justified in the field and padded on the left with blanks. If w
specifies fewer characters, only the left most characters will be used.

Example:

WRITE (6, 60) NAME,A,B
60 FORMAT (1X,A1,A6,A2)

Internal Values: NAME='AB', A='CDEF', B='GHIJ'

Output Record: A CDEFGH

R Format (Alphanumeric, Right Justified) rRw

The R format specification is similar to the A specification, except
that internally data is store right justified, and padded to the left
with zeros instead of blanks.

If w is less than the number of characters the variable can hold (1
for integer *1, 2 for integer *2, 4 for integer *4, 4 for single
precision, and 8 for double precision), the characters are right
justified in the variable and padded on the left with blanks. If w is
greater, only the right most characters are used. Input characters are
always stored in the variable from left to right.

Example:

READ (6, 50) I,ALPHA
50 FORMAT (2A3)

Input Record: ABCDEFG

Internal Values: I='BC,I ALPHA=
,zDEF' (z='00'X)

Output - The contents of the specified variable are to be transferred
to the w character field without conversion. If w exceeds the number
of characters contained in the variable, the output characters will be
right justified in the field and padded on the left with blanks. If w
specifies fewer characters, only the right most characters will be
used.

Example:

WRITE (6, 60) NAME,A,B

SECTION 3 - COMPILER Reference Manual p a g e 03-29

60 FORMAT (1X,A1,A6,A2)

Internal Values: NAME='AB,# A=*CDEF*, B='GHIJ'

Output Record: B CDEFIJ

H Format (Hollerith) nHs

Input - H format specifies that the next n characters are to be read
from the input record, and stored in the n character field s; i.e. the
input operation is to physically alter the H specification. For
example, the statements:

READ (6, 50)
50 FORMAT (8H*******)

with input record:

MY NAME

will cause the FORMAT statement to be altered as though it was written:

50 FORMAT (8H MY NAME)

Output - H format specifies that the next n character fields be
transferred to the next n positions in the output record. For example,
after the read statement in the above example has been executed, the
statement:

WRITE (6, 50)

will produce the output record:

MY NAME

SECTION 3 - COMPILER Reference Manual Page 03-30

3.3.6.4 Editing Functions

The ' (guote), / (slash) and X format specifications allow editing of
output messages through insertion of text, blanks, and vertical
spacing. In addition, / and X formats may be used on input to skip and
position records.

' Format (quote) r's'

Input - quote format is invalid on input

Output- Performs the same function as the hollerith field, the
characters in the string s are inserted in the output record at the
next available position.

For example, the statements:

WRITE (6, 20)
20 FORMAT (IX,'A''C,4'*')

would produce the output record:

A'C****

/ Format (Slash) r/

The 6lash specification causes the current record being processed to be
terminated, and processing on the next record iB to begin.

In the case of continuous slash specifications (such as / / / / . . . /) ,
6ince no conversion occurs between each of the slash specifications,
records are skipped during input, and blank records are generated
during output. Slashes serve as a delimiter in FORMAT statements,
commas preceding or following them are optional.

On input, a slash will cause a record to skipped. For example, the
statements:

READ (6, 60) I,R
60 FORMAT (/I8/F8.2)

would cause the first record to be read and bypassed, the second record
read and a value converted from the record and assigned to I; the rest
of the record bypassed; the third record read and a value converted
from it via F8.2 and assigned to R; and the rest of the third record to
be bypassed.

On output, whenever a slash specification is encountered on output, the
current record being processed is output and another record is begun.
If no other specification has been encountered before the slash, a
blank record is produced. For example:

WRITE (6, 50)
50 FORMAT (///5X,'NEW LINE'///)

SECTION 3 - COMPILER Reference Manual Page 03-31

For example, the format specification:

would cause three blank records to be output before the Hollerith
record, and three blank records would follow.

X Format (Space! rX

The X format code allows characters to be skipped on input, or blanks
to be introduced into a record on output. The X format code differs
from others in that the repeat count r is required; it may not be
omitted.

On input, the specification rX causes r characters in the input record
to be skipped.

Example:

READ (6, 50) I
50 FORMAT (8X,12)

Input Record: COUNTb=bl0

Internal Value: 1=10

On output, the specification rX causes r blanks to be introduced into
the output record.

Example:

WRITE (6, 50)
60 FORMAT (IX,'TIME',5X,'RATE•)

Output Record: bTIMEbbbbbRATE

(b is ASCII blank)

3.3.6.5 Special Format Codes

The C and M format codes provide special output capabilities. These
codes allow you to position the cursor anywhere on the screen, and to
output any character (including those defined with the CALL CHAR
subroutine) to an output device. The M and C format codes are invalid
on input.

C Format (Character) rCi

The C format specification indicates that an ASCII character is to be
written to the output device. This is particularly useful for writing
to the screen
(device 6), as characters defined using the CALL CHAR subroutine can
easily be written. The value of i is the ASCII value to be written to
the output device, and may be any value between 0 and 255 ('00'X to
'FF'X).

SECTION 3 - COMPll.fcK Reference Manual Page 03-32

...,C49,C50,C51,...

will output the numbers 1,2 and 3 to the output device (e.g. screen).

M Format IMpye_Cursor) Mi.j

The M format code specifies the position of the CRT cursor during
transfer of information to the screen. The value of i is the row
address (from 1 to 24), while the value of j is the column address (1
to 32 for 32 column mode, or 1 to 40 for 40 column mode, or 80 for 80
column mode).

For example, the format specification:

...,M10.8,'score',...

would cause the cursor to be positioned to row 10, column 8, and the
message:

score

to be displayed there.

The M specification should only be used to write to the CRT. It
produces cursor positioning coordinate commands compatible with an
ADM-3A monitor, which is compatible with the MOOS implementation of the
console device.

For example, the cursor position command M10.8 actually sends to the
input/output package the following sequence of ascii characters:

<esc> = * (

which is the ADM-3A cursor postion command in form of <esc>, equals
sign, row + space, column + space.

3.3.6.6 N Format Specifications

N FORMAT specifications allow the replacement of any of the quantities
m, r, w, d, i or j with the letter N. When N ie encountered in the
FORMAT specification, its value is obtained from the next variable in
the variable list.

For example, the statement:

30 FORMAT (NX,NFN.N,3IN,N(3X,E8.2))

is a valid statement, and six values will be taken from the list for
the quantities specified by the letter N.

The variable list item for N specifications must be integer.

The following example shows the N format code being used to read a
variable number of array elements, based on the first number which was

SECTION 3 - COMPILER Reference Manual Page 03-33

entered:

READ (6, 9100) NOITEMS, NOITEMS, (A(I),1=1,NOITEMS)
9100 FORMAT (13, NF8.3)

would correctly process the input record:

3,1.2,6.1,8.5

3.3.6.7 Carriage Control

When records are to be printed under format control, the first
character of each record is interpreted as a carriage control
character; this character is no*t printed. The following table shows
the effect of each carriage control character:

Control Character Effect

blank print, new line
0 new line, print, new line
1 new page, print, new line
+ print

other print, new line

For example, the statements:

WRITE (6, 100)
100 FORMAT ('lTITLE'/'OLINEl'/' LINE2')

will print at the top of a page:

TITLE

LINE1
LINE2

The control characters have the same effect on the screen as with a
print. A •1' will cause the screen to clear, and the cursor to be
positioned to the top of page.

It is suggested that screen formatting using cursor movement (M format)
and writes be done using the '+' carriage control, to suppress all
carriage control. For example, the statement:

9100 FORMAT (' + ', M10.10, 'Hello')

will cause the cursor to be positioned to row 10, column 10, and the
message 'Hello' to be written there.

3.3.6.8 Q Format - I/O Transfer Length

It is occasionally useful to know how many characters were actually
read during an input operation. The Q format character will return
this value. For example:

SECTION 3 - COMPILER Reference Manual Page 03-34

READ (6, 9100) LEN, IVAL
9100 FORMAT (Q, 16)

If the user presses enter for the above, then the value of LEN would be
zero
(zero bytes or characters read). If the user types one numeric
character and enter, then the value of LEN would be 1, etc.

The Q format may appear anywhere in the FORMAT list. It is illegal for
output.

SECTION 3 - COMPILER Reference Manual Page 03-35

Examples:

A(10)
L(5,5,5)
ARRAY(2,2,2,5)
VALARY(7,23)

3.4.2 Variable Array Declarations

Variable array declarations are defined in the same manner as fixed
array declarations, with the exception that one or more of the array
dimensions can be a variable name passed to a subprogram via a
parameter list. A variable used in this manner must be of integer *2
type.

Examples:

ARG1(ARG2,ARG3)
ALPHA(BETA,2,7)

3.4.3 Array Storage

Elements of an array are stored continuously in memory. If an array
has more than one dimension, then the array is stored such that the
leftmost dimension varies first, followed by the next leftmost
dimension, etc. For example, the integer array K(2,3,2) occupies 24
bytes (12 words) of memory, and is stored as follows:

byte 0 K(1,1,1)

3.4 Declaration Statements

Declaration statements define the variables which are used in a
program, their dimensions, locations, types, and initial values.
Declaration statements are not executable, and must appear before any
executable program statement.

3.4.1 Fixed Array Declarations

Fixed array declarations define the dimensions of array variables. An
array declaration is made as part of a DIMENSION, COMMON or explicit
type statement.

General form:

v(dl, d2, ..., dn)

where:

v is the FORTRAN name which identifies the array, and

dl,d2,...,dn are integer *2 constants which define the upper
bounds of each of the n dimensions.

SECTION 3 - COMPILER Reference Manual Page 03-36

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte

2
4
6
8
10
12
14
16
18
20
22

K(2,l,l)
K(l,2,l)
K(2,2,l)
K(l,3,l)
K(2,3,l)
K(l,l,2)
K(2,l,2)
K(l,2,2)
K(2,2,2)
K(l,3,2)
K(2,3,2)

3.4.4 DIMENSION Statement

The DIMENSION statement reserves space in the local data area or COMMON
area for an array, and defines the array's bound. You can dimension an
array only once in a program, but a single dimension statement can
specify the dimensions of multiple arrays.

General Form:

DIMENSION vl,v2,...,vn

where: each vj is an array declaration.

The DIMENSION statement must precede the first appearance of each
subscripted variable in an executable statement or a DATA statement.

Examples:

DIMENSION A(l,2)
DIMENSION X(10),Y(5,15),CVAL(3,4,5)
DIMENSION NEXT(I,J,K)

3.4.5 COMMON Statement

The COMMON statement specifies variables which are allocated in common
data area for your program and subprograms.

General Form:

COMMON s1,62,...,sn

where: each sj is a FORTRAN variable name or array declaration.

Variables are allocated common storage in the order in which they are
declared in the COMMON statements. For example, the statements:

COMMON A,B,C
COMMON I,J,K

would cause A, B, and C to be assigned the first three storage units in
common, and the variables I, j, and K to be assigned the next three
storage units.

SECTION 3 - COMPILER Reference Manual Page 03-37

A subprograms common declaration need not match the main program's
declaration, but it must not be larger. For example, the statements:

COMMON X,Y,Z
COMMON L,M,N

defined in a subprogram matches the overall allocation size of the
previous example, but the variable names are different. If the
variable X was accessed in the subprogram, it would actually access the
same memory as the variable A from above.

Because you have complete control over the sequence of locations
assigned to variables in COMMON, they may be used as the medium for
transmitting data between the main program and subprograms, or amoung
subprograms. In this way, data is transmitted implicitly, without
specifically appearing in the parameter list of a subprogram.

Array declarations, as well as array names, can appear in COMMON
statements. For example, the statement:

COMMON 1(20,20)

is valid.

3.4.6 EQUIVALENCE Statement

The EQUIVALENCE statement is used to assign more than one variable to
the same storage location or locations.

General Form:

EQUIVALENCE si,s2,s3,...,sn

where: each si is an equivalence set of the form (vl,v2,v3,...,vm) and
each vj is a subscripted or non-subscripted variable name. If
subscripts are used, they must be integer constants.

Each pair of parenthesis in the EQUIVALENCE statement list encloses the
names of two or more variables that are to be stored in the same
location during execution of the object program.

For example, the statement:

EQUIVALENCE (ON,OFF)

specifies that the variables ON and OFF are to be assigned the same
storage locations.

If an array variable is specified, but the subscripts are not given, it
is assumed to be the first element of the array. Thus if XYZ is a
single dimensioned array of ten elements,

EQUIVALENCE (TEMP,XYZ)

is the same as:

SECTION 3 COMPILER Reference Manual Page 03-38

EQUIVALENCE (TEMP,XYZ(1))

Storage allocations specified in COMMON always override those specified
in an EQUIVALENCE statement. EQUIVALENCE statements are not allowed to
generate conflicting allocations.

For example, the statements:

COMMON A,B
EQUIVALENCE (A,B)

are invalid, since the EQUIVALENCE declaration attempts to override the
allocation specified in the COMMON statement.

3.4.7 Explicit Type Declarations

There are four type statements:

INTEGER, REAL, DOUBLE PRECISION, and LOGICAL

These statements are used to explicitly define the data type associated
with a FORTRAN name.

General Form:

type [*bytes] sl,s2,...,sn

where: type is one of the four declarations:

INTEGER
REAL
DOUBLE PRECISION
LOGICAL

[•bytes] is an optional qualifier for valid for INTEGER, REAL, and
LOGICAL types. It specifies the number of bytes of storage to be used
for each type. The following is the valid types and qualifier
combinations:

INTEGER *1 - one byte
INTEGER *2 - two bytes (default INTEGER)
INTEGER *4 - four bytes
REAL *4 - four bytes (default REAL)
REAL *8 - eight bytes (same as DOUBLE PRECISION)
LOGICAL *2 - two bytes (default LOGICAL)

and si is a FORTRAN name that identifies a non-subscripted variable, an
array, or a function name.

The type declaration overrides the implicit type conventions for the
identified names and is in effect throughout the program.

Examples:

LOGICAL ALPHA,BETA

SECTION 3 - COMPILER Reference Manual Page 03-39

DOUBLE PRECISION IVALUE
REAL *8 IVALUE
REAL I,J
INTEGER CONSTANT,SCALE
INTEGER *1 KCHAR
INTEGER M JCHAR

Optionally, type statements may be used to declare arrays that are
dimensioned in DIMENSION or COMMON statements. For example:

not

REAL *4 1(30)

is equivalent to writing:

REAL *4 I
DIMENSION 1(30)

If a name appears in a type statement, but is dimensioned in a COMMON
or DIMENSION statement, the type statement must appear first in the
program.

3.4.8 IMPLICIT Statement

The IMPLICIT statement is used to define the data types of variables
not explicitly declared. Unless explicitly declared, a data type is
associated with a variable by the first letter of its name per standard
FORTRAN conventions.

General Form:

IMPLICIT type [*bytes] (cl,c2,...en)

where:

type is one of four declarations:

INTEGER
REAL
DOUBLE PRECISION
LOGICAL

[•bytes] is an optional qualifier for valid for INTEGER, REAL,
and LOGICAL types. It specifies the number of bytes of storage
to be used for each type. The following is the valid types and
qualifier combinations:

INTEGER *1 - one byte
INTEGER *2 - two bytes (default INTEGER)
INTEGER *4 - four bytes
REAL *4 - four bytes (default REAL)
REAL *8 - eight bytes (same as DOUBLE PRECISION)
LOGICAL *2 - two bytes (default LOGICAL)

and ci is a single letter or a range of letters consisting of
two letters in alphabetical order seperated by a dash.

SECTION 3 - COMPILER Reference Manual Page 03-40

Examples:

IMPLICIT LOGICAL (A,XZ)

specifies that all variables whose names begin with A, X, Y, or Z will
be the LOGICAL type unless another type is explicitly declared for
them.

IMPLICIT INTEGER *4 (A-Z)

specifies that all variables will be of INTEGER *4 type unless another
data type is explicitly declared for them.

3.4.9 DATA Statement

Data variables not in COMMON may be given an initial value by means of
a DATA statement. If a variable does not appear in a DATA statement,
it will be initialized to zero.

General Form:

DATA sl/dl/,s2/d2/,...,sn/dn/

where:

si is a list of variables to be initialized

di is a list of constants that represent the initial values to
be given the variables in the corresponding si.

The commas following the slash characters are optional. However, the
elements of both lists must be seperated by commas. For example:

DATA A,B/1.4,2.9/C/.012/

A single data element of a previously-dimensioned array may be
initialized. This is done by forming a subscripted variable with
constant subscript expressions. For example:

DATA K(4,3) / 3 /

A complete array may be initialized by placing the array name
unsubscripted in the variable list. For example, if M is an array of
five elements, the statement:

DATA M/l,1,1,4,5/

will initialize the five elements of M.

Any constant in the values list may be preceded by an unsigned integer
followed by an asterick (*). The integer specifies the number of times
the data item is to be repeated. For example:

DATA M/3*l,4,5/

SECTION 3 - COMPILER Reference Manual Page 03-41

specifies the same five values for the array M as the previous example.

Data items may be numeric, logical, hexadecimal, or Hollerith
constants. For example:

DATA A ^ C L / S ^ Z ' ^ S A ' , 'ABCD', .TRUE. /

The data items of each data list must correspond in total storage units
with the variables in the variable list. For example:

DATA K,J,A,B / 4,3,7.2,0 /

is invalid because it specifies only five storage units (one per
integer constant and two per real constant) in the data list, whereas
six storage units are specified in the variable list.

If a string of alphanumeric constants is being assigned to an array,
the characters may be strung together without seperating commas. For
example:

DATA M/'ABCDEFGHIJ'/

If an odd number of characters is specified, a blank will be added to
fit the string into an even number of bytes. The variable list must
specify sufficient storage words for the constant.

Initial values assigned via a DATA statement are done at compilation
time, rather than at execution time as with an assignment statement.
Therefore, if a variable is given a new value via an assignment
statement, and the program is re-run without being reloaded, then the
variable will not longer contain the value specified in the DATA
statement. As a rule, it is best if variables initialized via DATA
statements never appear on the left hand side of an assignment
statement.

3.4.10 EXTERNAL Statement

The EXTERNAL statement is used to explicitly specify that a symbolic
name is an external subprogram, and not an INTRINSIC function
reference. You can use this statement to provide your own library
routines with the same names as the provided INTRINSIC library
routines.

General Form:

where:

EXTERNAL subl [,subn]

subl through subn are subprogram names.

For example, the following statement would override the
definition of the IAND expression:

INTRINSIC

SECTION 3 - COMPILER Reference Manual Page 03-42

EXTERNAL IAND

Therefore, an external reference for the IAND routine would be
generated, and the linker would expect one to be supplied.

SECTION 3 - COMPILER Reference Manual Page 03-43

3.5 Subprograms

Subprograms are units of compiled code that can be called by other
subprograms or by main programs. The subprograms are loaded with the
main program when it is linked, and reside with the main program in
memory.

Subprograms can be defined internally within the program (via an inline
function) or externally. If the subprogram is defined externally, it
may be defined as a library subprogram or compiled as part of your
program.

Inline functions (called statement functions) are defined by a single
assignment statement before any executable statements in a program or
subprogram.

External subprograms (functions and subroutines) consist of a set of
FORTRAN statements, the first of which must be a FUNCTION or SUBROUTINE
statement, and the last of which must be an END statement. The
subprogram can contain any FORTRAN statement, except for a PROGRAM
statement, or another FUNCTION or SUBROUTINE statement.

Functions always have a set (one or more) of parameters and generally
return a single value in its function name. A function name never
appears on the left hand side of an assignment statement.

Subroutines do not necessarily have to have parameters, and need not
return a value. Subroutines are called using the FORTRAN 'CALL'
statement.

3.5.1 Parameter Lists

Within a subprogram, parameters passed to the subprogram are referred
to as parameter names. These names may be arbitrarily selected by you,
they need not be the same as the names of the parameters passed by the
calling program. Parameters are defined in such in the FUNCTION or
SUBROUTINE statement of the subprogram. For example, the statement

SUBROUTINE XYZ(A,B)

defines the start of subroutine XYZ which will be passed two parameters
referred to as A and B. When the statement:

CALL XYZ(C,D)

is executed, each reference to A in XYZ will use the value of C, and
each reference to B the value of D. If XYZ is later initiated by the
statement:

CALL XYZ(E,F+3.14)

each reference to A in XYZ will be replaced by the value of E, and each
reference to D by the value of F+3.14.

If a subroutine is passed an array as a parameter, it may also be

SECTION 3 COMPILhK Reference Manual Page 03-44

passed some or all of the dimensions of the array. When the dummy
array is dimensioned, the dummy dimension values are used in the
declaration.

For example:

FUNCTION FUNCT(A,B,C)
INTEGER *2 B,C,A(B,C)

Note that only a dummy array can be adjustably dimensioned, and that
only parameter list integer scalar variables can be used as variable
dimension values. This i6 because no space need be allocated for the
array in the subroutine, it already exists in the calling program. The
array declaration only serves to define the array bounds and the
structure to the subroutine.

Constants may be passed as parameters. It is important that
subroutines do not modify a constant parameter.

3.5.2 Statement Functions

Statement functions are functions which can be defined with a single
assignment statement. Both arithmetic and logical functions may be
defined. Statement functions are defined within a main program or
subprogram, and are known only within that program unit. Their names
may not be passed to a subprogram. Statement function definitions must
appear after the last specification statement, but before the firBt
executable statement of the program unit.

General Form:

f(dl,d2,...,dn)= b

where:

f is the FORTRAN name of the function being defined,

di is the FORTRAN name of dummy variable i, and

b is any valid arithmetic or logical expression

Parameters of a statement function may represent only scalar variables
within the function definition. However, since dummy names only serve
as place holders within the definition, the same names may be used
elsewhere in the program to represent actual scalars, arrays, main
programs, subprograms, statement functions, or other dummy variables.

The data type of the statement function and its parameters may be
declared through the use of type declaration statements. If a
parameter name is declared in this fashion, and the name is also used
outside the function definition, the two items will have the same data
type.

If a name is used in the expression part of a statement function
definition which is not a parameter of that function, it represents the

SECTION 3 - COMPILER Reference Manual Page 03-45

same item as it would represent outside the definition.

Statement functions can refer to other statement functions, as long as
those referenced statement functions have been defined previously in
the program.

3.5.3 FUNCTION Subprograms

Function subprograms are generally used when a function cannot be
defined with a single assignment statement. A function subprogram is
compiled seperately from the calling program or subprograms.

Function subprograms consist qf any FORTRAN statements, except the
PROGRAM statement. It returns a single value as the function name and
is terminated by a RETURN statement.

3.5.3.1 FUNCTION Statement

General Form:

type FUNCTION f(dl,d2,...,dn)

where:

type is optional and is one of the specifications: INTEGER,
REAL, DOUBLE PRECISION, or LOGICAL

["bytes] i6 optional, and is only specified if the type
qualifier is specified. It is the number of bytes contained
within the type specified. The type and bytes qualifier must be
one of the following combinations:

INTEGER *1
INTEGER *2
INTEGER *4
REAL *4
REAL *8
LOGICAL *2

f is the FORTRAN name of the function being defined, and

di is the FORTRAN name of parameter i.

The specification type is optional. It identifies the data type of the
value associated with the function. If omitted, a data type will be
associated with the name as defined by standard FORTRAN rules. For
example, the statement:

FUNCTION RATE(T,S,V)

defines a function named RATE which has three parameters and returns a
single precision (real *4) value to its caller; the statement

LOGICAL *2 FUNCTION GAME(X,R,T)

SECTION 3 - COMPILER Reference Manual Page 03-46

defines a similar function which returns a logical *2 value.

3.5.3.2 Function Calls

Function subprograms and statement functions are referenced in the same
way: the function name, followed by a list of parameters in
parenthesis, appears as part or all of an arithmetic expression. A
function subprogram, however, is not defined in the same program unit
as the caller. Hence, if the type of value returned by the function
differs from that defined by the type association rules, that type must
be explicitly declared in the calling program as well as in the
function subprogram.

The following example illustrates the double
included in object form on the library disk:

precision sine function

REAL *8 FUNCTION DSIN (X)
IMPLICIT REAL *8 (A~Z)

C SINE FUNCTION OF X
DATA C0,C1,C2,C3,C4 /

1 1.570796327D0, 0.645964096D0,
2 0.0796925827D0, -0.00468126637D0,
3 0.000158206524D0 /
DATA PI2 / 6.28318530D0 /
DATA PID2 / 0.63661977D0 /
ARG = X
DO WHILE (ARG .GE.
ARG = ARG - PI2

ENDDO
ARG = ARG * PID2
IF (ARG .LT. 0.0D0

1 REDUCE ARGUMENT BY 2PI
PI2)

ARG + 4.0D0

I SPECIAL CALC IF SMALL ARG
0.0D0) THEN

1D-16) THEN

) THEN
ARG

ENDIF
XARG = ARG
IF (XARG .LT.
XARG = XARG

ENDIF
IF (XARG .LT.
DSIN = XARG
RETURN

ENDIF
IF ((ARG
ARG =(-ARG)

ELSEIF (ARG
ARG = ARG -

ENDIF
ARG2 = ARG*ARG
DSIN = ((((C4*ARG2+C3)*ARG2+C2)*ARG2+C1)*ARG2+C0)*ARG
END

.GT. 1.0D0)
+ 2.0D0
.GT. 3.0D0)
4.0D0

AND. (ARG .LE. 3.0D0)) THEN

THEN

3.5.4 SUBROUTINE Subprograms

A subroutine is a subprogram which may be initiated only by a CALL

SECTION 3 - COMPILER Reference Manual Page 03-47

where:

s is the FORTRAN name of the subroutine being called, and

ai is the variable name, constant, subprogram name, or
expression being passed as parameter i. If the subroutine has
no parameters, then the parameter list and its enclosing
parenthesis are omitted.

statement containing its name and a parameter list if required. A
subroutine can have any number or no parameters, and can return any
number of values. A subroutine is compiled seperately from its calling
program or subprograms.

A subroutine can consist of any valid FORTRAN code, with the exception
of the PROGRAM statement. It terminates by executing a RETURN
statement. The subroutine always returns to the calling program or
subprogram at the statement after it was called.

3.5.4.1 SUBROUTINE Statement

General Form:

SUBROUTINE s(dl,d2,...,dn)

where:

s is the FORTRAN name of the subroutine being defined, and

di is the FORTRAN name of parameter i. If the subroutine has no
parameters, then the parameter list and its enclosing
parenthesis are omitted.

The following example illustrates a subroutine to poll the keyboard
until a key is read, and return the key value to the calling program:

SUBROUTINE KEYSCAN (KEYCODE)
IMPLICIT INTEGER *2 (A-Z)

C
C THIS SUBROUTINE SCANS THE KEYBOARD UNTIL A KEY IS FOUND, THEN RETURNS
C THE KEYCODE TO THE CALLING PROGRAM
C

STATUS = 0
DO WHILE (STATUS .EQ. 0)
CALL KEY (0,KEYCODE,STATUS)

ENDDO
RETURN
END

3.5.4.2 CALL Statement

General Form:

CALL s(al,a2,...,an)

SECTION 3 COMPILER Reference Manual Page 03-48

Examples:

CALL SUBR(K,ALPHA)
CALL PUNCH

3.5.5 RETURN Statement

This statement logically terminates function and subroutine
subprograms, and returns control to the calling program. When used in
a function subprogram, it returns the value most recently assigned to
the function name.

General Form:

RETURN

3.5.6 Library Subprograms

FORTRAN provides a library of subprograms which include commonly used
mathematical computations; linkages to graphics, sounds, and sprites;
and other miscellaneous useful functions. All that is required to use
these functions is to reference them correctly using the information
provided in chapter 7. The subprograms are included in three supplied
libraries, the FL (FORTRAN) library, the GL (Graphics) Library, and the
ML (Math) Library. To use the subprograms, you must specify the name
of the library at link time.

If you provide a subroutine with the same name as a library routine,
your subroutine will be used by the linker rather than the library
version.

Refer to Chapter 7 for the library subprogram definitions.

SECTION 3 - COMPILER Reference Manual Page 03-49

3.6 PROGRAM Statement

A program statement identifes the main unit of compiled code. The main
unit is the code that initially receives control upon execution. It
must be linked first (before any subprograms).

3.6.1 PROGRAM Statement

General Form:

PROGRAM name

where name is a valid FORTRAN name of 9 or less characters.

The PROGRAM statement is an optional statement which is used to
identify a main program. When the main program and its subprograms are
processed by the linker, this name is printed with its starting address
in memory.

Example:

PROGRAM TEST

could appear as the first statement in a FORTRAN main program.

This name is also used in the symbolic debugger to specify the module
name for the main program.

SECTION 3 - COMPILER Reference Manual Page 03-50

3.7 Compilation Directive Statements

Compilation directives alter the compilation process. There is only
one compilation directive statement, the INCLUDE statement.

3.7.1 INCLUDE Statement

General Form:

INCLUDE 'file-name(/LIST or /NOLIST]'
where:

file-name - is an up to 24 character file name which indicates a
file to include during the compilation process, and

/LIST or /NOLIST - i6 an optional keyword which specifies that
the included block of FORTRAN code is to be listed on the
listing file.

When the include directive is read, the file-name specified is opened,
and FORTRAN statements are read from the specified file. When an end
of file is encountered on the included file, then records are again
read from the original source file. You can use as many INCLUDE
statements as you like in your program, but INCLUDE statements cannot
be nested (i.e., an included file cannot contain an INCLUDE statement).

The optional /LIST and /NOLIST qualifiers allow specification of
whether the included code is listed to the listing file. If the
gualifier is not specified, then the code will be listed.

INCLUDE statements are especially useful for processing COMMON blocks,
as the common block need not be specified repeatedly in each program
and subprogram.

For example:

INCLUDE 'DSKl.COMMON/NOLIST*

would specify including the disk file •DSKl.COMMON' in the compilation
of the routine.

The following are valid TI-99 GPL and MDOS implementation include
files:

INCLUDE 'DSKl.DBCOMM'
INCLUDE 'DSK1.FORTCOMP.COMMON/NOLIST'

Note that with MDOS 9640 FORTRAN, it is not necessary to include the
disk volume name. If it is unspecified, then the default drive
(current MDOS prompt) will be searched for the specified file.

For example, the following are all valid MDOS file names:

INCLUDE 'DSKl.COMMON'

SECTION 3 - COMPILER Reference Manual p a g e 03-51

INCLUDE 'COMMON'
INCLUDE 'A:COMMON'

SECTION 4 - COMPILER Operations Page 04-1

4.0 Introduction

The FORTRAN compiler is initiated differently when using the MDOS
compiler implementation or when using the TI-99 GPL compiler
implementation.

The TI-99 GPL implementation of the compiler is initiated by selecting
item 2 on the FORTRAN main menu. This will cause 4 files to be loaded
into main memory, and the execution of the compiler to be initiated.

The MDOS implementation of the compiler is initiated by specifying the
task name HF9640" on the MDOS command line. All parameters needed for
the compilation are specified on a single command line. Note it is
possible to include the command line as part of a regular MDOS batch
file.

4.1 Compiler Requirements

The compiler requires that the following items be specified:

1. Input File Name:

The name of the file which contains the source (prepared by the
EDITOR).

2. Object File Name:

The optional name of the file which will contain the object
module.

3. Listing File Name:

The optional name of the file or device which will contain a
formatted listing of the input file, and allocation maps.

4. Scratch Disk Number:

The compiler may require that two scratch files be temporarily
created, used, and then deleted. The TI-99 GPL compiler
implementation allows you to specify the volume on which the
scratch disk files will be created, the MDOS implementation of
the compiler always defaults to the RAM disk (device DSK5:). The
names of the scratch files are as follows:

SC$1FIL$ - contains a copy of the source code (one module)
used for printing purposes.

SC$2FIL$ - contains intermediate object code (one module)
used by the compiler.

As an estimate, the scratch files will need to be created if your
input file contains a program or subprogram longer than 80 lines
(160 if you are compiling using the mini-memory module, 320 if
you are compiling using MDOS).

SECTION 4 - COMPILER Operations Page 04-2

If you have a RAM disk, compilations will be quicker if you
assign the scratch files to it. Under MDOS, the scratch files
are ALWAYS written to the RAM disk.

5. Compilation Options:

Compilation options are specified as two character
identifications, seperated by commas. The following options are
available:

OB - Intersperse source listing with the hex object for
each statement.

SC - Perform subscript checking on every subscript
reference to ensure that the specified array index is
within bounds of the array (as defined in a DIMENSION, or
type specification statement). Note that you are not
required to specify this option if you have arrays in your
program, it just provides additional execution time
subscript checking. (specification of this option will
cause your program to grow larger in memory size)

DM - Compile all statements which begin with the letter "D"
as normal statements (these are treated as comment lines if
the DM option is not specified).

DB - Generate debugger symbols (see section 6).

4.1.1 TI-99 GPL Compiler Invocation

The TI-99 GPL compiler implementation is MENU driven. You are prompted
for each required data item as specified above. If you do not wish to
enter an optional item (e.g. the options), simply press enter when
requested.

If you wish to automate (batch) the compilation process, you may want
to consider using the use the BATCH-IT utility distributed by A6gard
Software (not provided as part of this package).

4.1.2 TI-99 GPL Compiler Example:

The following will correctly execute the FORTRAN compiler, assuming the
disk files as specified exist:

99 FORTRAN Compiler

Input File Name?
> DSK1.TEST

Object File Name?
> DSK1.TESTOBJ

Listing File Name?
> CRT

SECTION 4 - COMPILER Operations Page 04-3

Scratch Disk Number (1-3)?
> 1

Compilation Options?

> OB, DM

Press ENTER to Continue

Where items tagged with a caret (>) are items entered by the user.

4.1.3 MDOS FORTRAN Compiler Invocation

The MDOS implementation of the. FORTRAN compiler is completely command
line driven, there are no menus. This allows you flexibility to use
the "shell" features of MDOS to back up to a previous command line
using the "up-arrow" key. It also allows you to include the
compilation statement in a batch file, for automated re-compilations.

The syntax to compile a FORTRAN program using the MDOS implementation
of the FORTRAN compiler is:

F9640 [/List_File] [/POptions] [/ObjectFile] SourceFilename

where:

List_File: Is the optional listing file name,
(for RS232), CRT, DSK2.LISTFILE, etc.

e.g. AUX

ObjectFile: Is the optional
TESTOBJ, DSK5.TOB, etc.

object file name, e.g.

Options: Are the optional compilation options OB, SC, DB,
or DM. They are specified as a string, with no imbedded
blanks, and each option is seperated by a comma (e.g.
DM,OB,SC).

SourceFilename: Is the reguired name of the FORTRAN
source file to compile. It must be last in the list of
parameters specified on the command line.

For example, to compile a program called TEST on B: (DSK2.) from the
MDOS prompt B>, with the 9640 FORTRAN disk inserted in the A: drive,
you might type:

A:F9640 TEST

Note that this command will only generate an error listing on the CRT,
no object file or listing file will be produced as none was specified.

As another example, the following command will compile the same file,
but produce a listing file on the AUX device (to a printer that is set
up for 8-bit, 4800 baud, no parity), generating an object file to the
ram disk DSK5:, with compilation options for OB (Object Generation), SC
(subscript checking), and DB (debug code):

SECTION 4 - COMPIl.i i, operations Page 04-4

MODE RS232/1:4800
F9640 /ODSK5.TESTOBJ /POB,SC,DB /LAUX TEST

Note that the gualifiers /O, /P and /L are all optional, and may be
specified in any order on the command line.

4.2 Compiler Execution

Once the compiler has been initiated, the messages

99/9640 FORTRAN Compiler Version xxxxx
Copyright 1989 by LGMA Products
Compilation in Progress

are displayed.

Any source errors which may be present in your input file will be
listed along with your listing file, and also echoed to the screen.

When the compiler completes, the MDOS implementation of the compiler
returns to the MDOS prompt. The TI-99 GPL implementation displays the
message:

Press ENTER to Continue

In this case, press ENTER to return to the FORTRAN main menu.

4.3 Compiler Listing

A listing of the program is produced on the listing device, if one was
specified. Each line of the listing contains the line number in
decimal, followed by the source statement. If the source statement
contains warnings or errors, then the warnings or errors follow the
line.

If a source statement has a warning or error message, the statement is
also listed on the screen, along with the warning or error message.

The top line of each page contains the FORTRAN version identifier, the
program or subprogram name, and a page number.

The source listing is followed by an allocation map which contains
allocation, size, and error information about the compiled program.

4.4 Allocation Map

The top line of each page of the allocation map is a header as
described in the previous section, except the word "Allocation" is
appended to the program or subprogram name. The following sections may
appear in the map:

Statement Labels

SECTION 4 - COMPILER Operations Page 04-5

If there are any statement labels within the program, they are
printed under this heading in order of increasing label number. The
label's number is listed first, followed by the label's hexadecimal
location relative to the beginning of the module. The absolute
location can be determined by adding this number to the absolute
memory address for the start of the logic in the linker map. An
error flag is appended to the label if the label was incorrectly
used.

Subprogram References

If any subprograms are referenced, their names are printed under
this heading.

Common Area

If any variables were declared to be in blank COMMON, the variables
and their locations are printed under this heading. Each variable
is printed in the summary along with the following information:

1. The hexadecimal location of the start of the variable,
relative to the start of COMMON.

2. A following letter which indicates the variable type, as
follows:

b - INTEGER *1 I - INTEGER *2
4 - INTEGER *4 R - REAL *4
D - REAL *8 L - LOGICAL

3. The name of the variable.

Common Errors

Any errors concerning the allocation of variables in blank COMMON
are printed under this heading. The name of the variable in error
is printed.

Local Data Area

If any local variables were used, the variables and their locations
are printed under thi6 heading. Each variable is printed in the
summary along with the following information:

1. The hexadecimal location of the start of the variable,
relative to the start of local data area.

2. A following letter which indicates the variable type, as
follows:

b - INTEGER *1 I - INTEGER *2
4 - INTEGER *4 R - REAL *4

SECTION 4 - COMPILER Operations Page 04-6

D - REAL *8 L - LOGICAL

3. The name of the variable.

Local Errors

Any errors concerning the allocation of variables in the local area
are printed under this heading. The name of the variable in error
is printed.

Note that the absence of any header indicates that no such identifiers
occured in the program.

The second part of the allocation map contains a summary of the local
data section, logic section, and common section sizes. The following
items appear in the map:

Data Size - The size of the local data area, in bytes. This
includes space for linkage, dummy variables, Hollerith strings,
local variables, and temporaries.

Logic Size - Total program logic size including the program's
instructions and constants, in bytes.

Module Size - The sum of the data size and logic size.

Common Size - The total byte size of COMMON.

4.5 Compiler Abort Errors

The following errors will cause the compiler to display a text message
describing the error, and will cause the compiler to abort:

Input/Output Errors

The following errors are all input/output related errors returned by
the operating system:

I/O Error - Bad Device Name
I/O Error - Write Protected
I/O Error - Bad Open Attribute
I/O Error - Illegal Operation
I/O Error - No Buffer Space
I/O Error - Read past end of file
I/O Error - Device Error
I/O Error - File Error

Internal Compiler Errors

The following errors are related to internal problems with the FORTRAN
compiler. The first error is caused by your program being too large to
compile, and the solution is to "downsize" your program by reducing the

SECTION 4 - COMPILER Operations Page 04-7

data 6ize, or by splitting the program into smaller modules
(subprograms). The second error should never occur and indicates an
internal compiler fault.

OVF Error - Compiler Memory Overflow
INT Error - Internal Compiler Fault

MDOS Only ErrorB

The following errors are related to the MDOS command line processing
and memory allocation:

NOP Error - Nothing to DOl
Occurs when no prbcessing i6 indicated on command
line.

BCM Error - Bad Command Line Option Specified (/O, /L, /P)
The "slash" option is not an O, L, or P.

OTL Error - Option too long
An individual option exceeds 20 characters.

CRS Error - Cannot Retrieve Command String
An error was returned by MDOS when retrieving
command line.

OST Error - Command Line Option Specified Twice
A "slash" option was specified twice.

MEM Error - Cannot Get Memory, Error=x
Not enough memory to run compiler. Suggest re
ducing RAM disk, or removing TIMODE in AUTOEXEC.

If the error is an input/output error, then the file name associated
with the error will also be displayed.

4.6 Source Statement Warnings

Certain conditions arising in the compilation may not be what you
intended. The compiler checks for three of these conditions, and if
they arise, prints a warning on the statement. There are three such
warnings, as follows:

1. Mixed mode arithmetic

The statement contains an expression on the right side of the equals
sign which has mixed mode arithmetic (e.g. real and integer
expressions). FORTRAN will supply the necessary conversion for the
different types.

2. Name is longer than 9 characters

A FORTRAN name (variable name, subprogram name, or program name) is

SECTION 4 COMPILER Operations Page 04-8

longer than 9 characters. FORTRAN will truncate the name to 9
characters.

3. Value is too large or too small

A numeric value has been specified which is too large or too small for
the type of variable specified. FORTRAN will truncate the value.

4.7 Source Statement Errors

The compiler checks the syntax of your FORTRAN program, and if
incorrect, will print an error message with the source line in error to
the specified listing file, and will also display the source line in
error and error message on the CRT. You should not attempt to execute
a program which contains source errors, as the result is unpredictable.

1. Could not allocate variable

The compiler could not allocate memory to some or all of the
variable names specified.

Rules:

a. A name may not appear in more than one COMMON statement
per module, or more than once within such a statement.

b. A dummy argument of a subprogram may not appear in a
COMMON or EQUIVALENCE statement.

c. Constant dimensions must be greater than 1 in a
specification statement

d. Only dummy arguments may be adjustably dimensioned, and
only dummy arguments may be used as adjustable dimensions.

2. Storage count is wrong in DATA

The storage reguirements of the variables being initialized do
not match those of the constants used to initialize them.

For example:

DATA A,B / 1.0, 2.0, 3.0 /
**Error-Storage count is wrong in DATA

3. Variable in DATA statement also in COMMON

An attempt was made to initialize variables in COMMON using a
DATA statement. Only local variables will be initialized as
specified.

For examnle:

SECTION 4 - COMPILER Operations Page 04-9

COMMON A
DATA A / 1.0 /

**Error-Variable in DATA statement also in COMMON

4. Variable used incorrectly

An identifier is being used in a construct not permitted by the
FORTRAN language.

For example:

FUNCTION FUNCT <A,B,A)
**Error-Variable used incorrectly

Rules:

a. Dummy variables must be unique, and subscript variables
must be of type integer.

. b. Function references must be accompanied by argument
lists.

c. An array's type may not be declared after it is
dimensioned.

d. Letter ranges in an IMPLICIT statement must be in
alphabetical order. Implicit type may be specified only in
terms of starting letter rather than starting letter
combinations.

5. Illegal compilation option

The specified option is invalid.

For example :

OB, XX
**Error-IIlegal compilation option

6. Missing or bad statement label

A format statement has either no label or a doubly defined label.

For example:

FORMAT (1X,F10.2)
**Error-Missing or bad statement label

7. Illegal statement of logical IF

Illegal argument statement of a Logical IF.

SECTION 4 - COMPILER Operations Page 04-10

DO, IF, and Computed GOTO statements may not be arguments of a
logical IF statement.

For example:

IF (A .LT. B) IF (C .LT. D) GOTO 2
**Error-Illegal statement of logical IF

8. Subscript is out of range

Array name is not properly subscripted.

For example:

DIMENSION A(10)
A(I,J) = 10.0

**Error-Subscript is out of range

Rules:

a. Subscripts must match array declarations in number
except in an EQUIVALENCE statement.

b. All array references must be subscripted except when
used as arguments in DATA, READ, WRITE, CALL, or function
reference statements.

c. Subscripts are limited to form j*i+/-k.

d. Constant subscripts must refer to an array element
between 1 and n for an n-element array.

9. Don't understand this statement

The statement is not understood by the compiler, and is
incorrect.

For example:

A = A+
**Error-Don't understand this statement

10. Variable used in incorrect context

The type (integer, real, double precision, or logical) of the
indicated variable or expression is different from that required
by the syntax of the FORTRAN language.

For example:

REAL A
A=.FALSE.

SECTION 4 - COMPILER Operations Page 04-11

**Error-Variable used in incorrect context

Rules:

a. An integer *2 variable is required for:

Variable Subscript
Adjustable Dimension
I/O status return variable

b. Logical values may not be assigned to numeric variables.
Numeric variables may not be assigned to logical variables.

c. IF statements with numeric conditions must have 3 labels
as arguments IF statements with logical conditions must
have full statements as arguments, or the keyword "THEN".

d. Numeric and relational operators (+, -, /, **, .LE.,
.LT., .GE., .GT., .EQ., .NE.) must have numeric arguments,
logical operators (.AND., .OR., .EOR., .NOT.) must have
logical arguments.

e. Conficting explicit or implicit type declarations are
not permitted.

11. ENDIF statement is missing

A program specified an IF ... THEN structured if, but no ENDIF
statement was found.

For example:

IF (I .EQ. 1) THEN
END

**Error-ENDIF statement is missing

12. DO loop is used incorrectly

A program specified a DO loop which extended into the range of a
structured IF ... THEN ... ENDIF, or a structured DO WHILE
ENDDO.

For example:

DO 1000 1=1,10
IF (I .EQ. 1) THEN

1000 CONTINUE
ENDIF

**Error-DO loop is used incorrectly

13. THEN statement is missing

SECTION 4 COMPILER Operations Page 04 12

An IF statement was missing the "THEN" keyword.

For example:

ELSEIF (I .EQ. 1)
**Error-THEN statement is missing

14. ELSE statement is used incorrectly

An ELSE statement was specified without a preceding IF ... THEN.

For example:

IF (I .EQ. 1) GOTO 100
ELSE

**Error-ELSE statement is used incorrectly

15. ENDIF statement is used incorrectly

An ENDIF statement was specified without a preceding IF ...
THEN.

For example:

IF (I .EQ. 1) GOTO 100
ENDIF

**Error-ENDIF statement is used incorrectly

16. Compiler workspace memory overflow

An internal memory overflow occurred at the statement specified.
The only solution to this error is to reduce the size of
individual modules within your program, or to reduce the number
and/or size of the variables specified in your program.

4.8 Allocation Errors

After all statements of a program have been compiled, the compiler
assigns storage to all variables as specified by COMMON and EQUIVALENCE
statements. When such assignment is impossible, the compiler assigns
storage for the variables in error as if they had not appeared in these
statements. As part of the allocation map, each variable name appears
in an error summary.

4.9 Label Errors

In the label summary, the listing of the label in error is followed by
one of the letter 'E' if the label is in error. A label error may be
caused by:

1. Label is undefined. All references to an undefined label are

SECTION 4 - COMPILER Operations Page 04-13

resolved to an error exit.

2. Label is doubly defined. All references to a doubly defined
label are resolved to the first appearance of the label.

3. Label has been misused. Possible violations include:

a. A labelled DO, GOTO, Computed GOTO, Arithmetic IF, STOP,
PAUSE, RETURN, or END statement terminates the range of a DO
loop.

b. A FORMAT statement label was used other than as a format
specification a READ or WRITE statement.

c. A non-FORMAT label was used in a READ or WRITE statement's
format specification.

d. A DO loop terminating on the specified label is improperly
nested.

e. A labeled specification statement was referenced.

All references to a misused label are resolved to an error exit.

4.10 Program Size Restrictions

During program compilation, the compiler may require that two scratch
files be created, as described in section 4.0. The disk specified for the
scratch files must contain enough spare area to hold them. If an overflow
on the disk takes place, then an input/output error (out of room on
device) will take place on one of the files SC$1FIL$ or SC$2FIL$. To
recover, use a disk which has more room available, or reduce the size of
individual modules within your program/subprograms.

For the MDOS implementation, these files are created automatically on the
RAM disk. If you run out of room for either of these files, either reduce
the size of individual modules within your program, or increase the size
of the RAM disk in your AUTOEXEC file (and reboot MDOS).

The compiler also uses fixed table space. This area primarily contains
working tables for unique symbol names (e.g. scalars, arrays, labels,
etc.) for each program or subprogram which is being compiled. When this
table is exceeded, then the error message:

OVF - Memory Overflow

is displayed on the screen, and the compiler aborts. The only solution at
this point is to reduce the number of unique symbol names in your program
(perhaps by segmenting the program into multiple subprograms).

The compiler also restricts each program or subprogram to 127 names of
each type (e.g. 127 labels, 127 integer *2 variables, etc.).

SECTION 5 - LINKER/LOAD/RUN Operations p a g e 05-1

5.0 Introduction

After your program has been compiled, producing an object module, it
must be linked with other object modules, and library subroutines, to
produce an executable program. The linker allows your to collect
together (or link together) these seperately compiled object modules to
form an executable program in main memory. The linker also produces a
"link map", which indicates where in memory the various object modules
reside.

Both implementations (TI-99 GPL and MDOS) of the linker produce an
executable file directly from the linker. The MDOS implementation
produces program files which are initiated by typing the FORTRAN task
name on the MDOS command line, the TI-99 GPL implemenation produces a
FORTRAN program which can be initiated using item 7 (Load) on the
FORTRAN menu, or directly executed from item 5 (LOAD and RUN) on the
Editor/Assembler Menu page.

5.1 LINKER

The linker is initiated differently when using the MDOS implementation
of the linker or when using the TI-99 GPL Implementation.

The TI-99 GPL implementation of the linker is called by selecting item
3 on the main FORTRAN menu. After loading a file, the LINKER is
initiated.

The MDOS implementation of the linker is called by entering the ta6k
name "FLINK" on the MDOS command line. All parameters needed for the
link are specified on a single command line. Note it is possible to
include the command line as part of a regular MDOS batch file.

5.1.1 Operation

The linker reguires that the following information be specified:

1. Executable File Name:

This is a reguired item, and is the starting name of the
executable program module to be produced. Note that FORTRAN
produces as many modules as are needed to generate the entire
program object. The different modules are created by
incrementing the last letter of the file name, as with the
Editor/Assembler SAVE routine.

For example, if you specified an executable file name of:

DSK1.TESTEXE

and the FORTRAN linker actually required three modules to
complete the link, then the three files created on the disk would
be:

DSK1.TESTEXE

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-2

DSK1.TESTEXF
DSK1.TESTEXG

Note when using the TI-99 GPL linker implementation, the
preceding volume name (e.g. DSK1.) is required. When using the
MDOS implementation, it is optional, and if omitted, the files
will be created on the current MDOS default volume specified on
the command prompt (e.g. if your command prompt is currently A>,
then the files will be created on di6k drive DSK1.).

2. Listing File Name

The optional name of the file or device which will contain a
listing of the FORTRAN link map. If omitted, the link map is
sent to the CRT.

3. Object File Name(s):

At least two object files MUST be specified as being loaded with
the linker.

The FIRST object file must 6tart with your FORTRAN main program.
It may also contain FORTRAN subroutines or FUNCTION subprograms.

Intermediate object files may contain FORTRAN subroutines and/or
FORTRAN function subprograms, and/or assembly language
subroutines prepared in the proper format. You may specify these
in any order.

4. Scan FORTRAN Library

If unresolved references still exiBt after all object modules
have been loaded, then the specified object libraries will be
scanned. The first library to be scanned should always be the
main FORTRAN library FL. This may be followed by supplied
alternate FORTRAN libraries (e.g. GL and ML), and finally any
user generated FORTRAN libraries.

The FL library MUST always be specified.

5. Symbol File Name

If any modules within the object programs were compiled using the
"DB" (debug) option, you may optionally specify a symbol file
name to be used in conjunction with the symbolic debugger (see
chapter 6).

5.1.2 TI-99 GPL LINKER Operation

The TI-99 GPL implementation of the linker is entirely menu driven.
The user is requested for each needed file or device for the linker.

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-3

Optional items can be skipped by pressing ENTER for the menu item
response.

For example, the following will correctly execute using the TI-99 GPL
implementation of the linker, assuming that the disk files as specified
exist:

99 LINKER

Executable File Name?
> DSK1.TESTEXE

Listing File Name?
> RS232/1.BA=4800

Object File Name?
> DSK1.TESTOBJ

Object File Name?
> DSK1.TESTOBJ1

Object File Name?
> DSKl.OBJE

Object File Name?
>

Unresolved References
Scan Library Name?
> FL

No More Unresolved References
Symbol File Name?
> DSK1.TESTSYM

Saving file >TESTEXE
Saving file >TESTEXF

5.1.3 MDOS FORTRAN LINKER Operation

To use the FORTRAN linker FLINK, you must have at least 128k of memory
available.

The syntax for the linker command line is:

FLINK /Oobjectfile,...,objectfile [/Ilibrary file,...,libraryfile]
[/SSymbolfile] [/Llistingfile] Executable file

(note that command MUST appear on a single MDOS command line).

where:

object_file: are the required names of the object files to be
linked together, starting with the main FORTRAN program. Each
file name is seperated from the next by a comma.

SECTION 5 - LINKh) , s,uAD/RUN Operations Page 05-4

libraryfile: If you use the extended routines from the FL or
ML math libraries, or provide your own FORTRAN library, you
need to specify the names of those files here. The FL library
MUST always be specified to resolve linkages to the execution
support package necessary to allow your MDOS program to run.

symbolfile: If you are using the symbolic debugger, you would
specify the name of the file to be created to contain the
debugger information.

executablefile: The REQUIRED name of the executable program
file to be created. Note that FORTRAN always creates at least
two modules, one for logic and one for data.

For example, lets assume that you want to link a program called
TESTOBJ, and that the program does not include any references to any
libraries other than the reguired system library FL. The command
line would be:

A:FLINK /OTESTOBJ /IA:FL TESTEXE

This will link the object file DSK2.TESTOBJ, and produce the
resulting program files DSK2.TESTEXE and DSK2.TESTEXF.

A more complex link consisting of:

- a main program TESTOBJ and two sub-programs TESTOBJ0 and

TESTOBJ1

- scan of library FL

- scan of library ML

- scan of user library UL

- listing to the AUX device

- execution file on the RAM disk, DSK5, of TESTEXE TESTEXF

would have a command line of:
A:FLINK /OTESTOBJ,TESTOBJ0,TESTOBJl /LAUX

/IA:FL,A:ML,UL DSK5.TESTEXE

Note that the entire command MUST fit on a single MDOS command line.

5.1.4 LINKER Map

The LINKER Map describes where in memory the FORTRAN main program,
the main program data area, the FORTRAN subprograms, the subprogram
data areas, and the assembly language subroutines have been loaded.

The TI-99 GPL implementation of the FORTRAN linker loads the FORTRAN

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-5

TEST
ERRORPR

Spare Area

Data Area

OPEN
ERRORPR *
TEST *

Common Area

$COMMON

A000
A582

Size = 1FA4

Size = 18D6

D68E
D782
DE9E

Size=0200

F100

would be produced for a program named TEST which has a user
subroutine named ERRORPR, calls a library routine named OPEN, and
has a common block declared of 200 bytes.

In the data area map, assembly language subroutines are shown
without an asterick (*), while data areas for FORTRAN programs are
shown with an asterick (*).

5.1.5 LINKER Errors

If an error is encountered by the linker while reading an object

task into the 24kbyte segment of high ram starting at memory
location A000, and ending at location FFCO.

The MDOS implementation of the FORTRAN linker loads the FORTRAN task
into the 60kbyte segment of ram starting at memory location >0400,
and ending at memory location >EFFE. The memory area from >F000 to
>FFFE is used for workspace registers, I/O address space, I/O
buffers, and other general work areas.

The LINKER map describes the loaded structure of the FORTRAN
program. The map is divided into four sections, as follows:

Logic Area - The size of the FORTRAN logic

Spare Area - The size of the spare area (unused)

Data Area - The size of the FORTRAN data area, including any
assembly language subprograms.

Common Area - The size of the FORTRAN blank common area.

Along with the above sizes, the starting locations of each
program/subprogram logic and data areas are shown. For example, the
map:

FORTRAN Map 4.2

Logic Area Size = 1686

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-6

file, the linker will abort, and a message will be displayed on the
screen as follows:

Input/Output Errors:

The following errors are all input/output related errors returned
by the operating system:

I/O Error - Bad Device
I/O Error - Write Protect
I/O Error - Bad Open Attribute
I/O Error - Illegal Operation
I/O Error - No Buffer Space
I/O Error - Read Past EOF
I/O Error - Device Error
I/O Error - File Error

Internal LINKER Errors:

The following errors are detected by the linker during processing
of the object or library files:

IVF Error - Internal Overflow Error
The module caused an overflow of the internal
Ref/Def table or the debugger symbol file.
Reduce the number of references to subroutines,
or reduce the size of the debugger symbol file
(perhaps by selectively compiling FORTRAN modules
with the DB option).

IMO Error - Illegal Binary Module
The module being loaded was not a binary object
module. Possible causes include assembly language
objects compiled in compress mode, and a
non-object (source) file being loaded.

MIS Error - Object File Mismatch
The object file being loaded contains an opcode
not recognized by the linker.

COM Error - Common Size Mismatch
A subroutine being loaded has a larger common size
than main program.

DMA Error - Double Main Program
An object module being loaded contains a main
program, but a main program has already been
loaded.

MMA Error - Missing Main Program

The first object module loaded does not contain
a main program.

OVF Error - Overflow Segment

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-7

The object module being loaded overflowed the
overlay area ("AOOO'X to 'FFD6'X for TI-99 GPL,
or '0400'X to "EFFE'X for MDOS)

DDE Error - Doubly Defined Module
A module name has been used more than once.

LIB Error - Bad Object Library
An error was detected in the processing of a
FORTRAN library, the format of the library has
been corrupted, or this is not a library file.

Command Processing Errors

The following errors are related to errors in command string
processing when running under MDOS only:

CRS Error - Command String Error
An error was returned by MDOS when returning
the command string.

NTD Error - Nothing to Dol
The command line did not specify a required
option parameter, such as the executable file
name, or an object file name (/0 option).

BOP Error - Bad Option Letter in command
A slash option had a bad option letter (not
/O, /I, /L or /S).

TLO Error - Option String Too Long (>60 Characters)
The specified option string was greater than 60
characters.

OST Error - Option Specified Twice
A slash option (e.g. /L) was specified twice
(e.g. /LAUX /LCRT).

MEM Error - Cannot Get Memory, Error=x
Not enough memory to run LINKER. Suggest
reducing RAM disk, or removing TIMODE in AUTOEXEC.

DCO Error - Double Comma in Command
An option string was specified with a double

comma,
e.g. /OTO,TP,,TD,OBJE

SECTION 5 LINKER/LOAD/RUN Operations Page 05-8

b.2 LOAD Utility

When using the TI-99 GPL implentation of the FORTRAN compiler, once
a program has been saved to a disk from the linker, it can be
reloaded at a later time without relinking by using the LOAD item on
the main menu (item 6).

When the LOAD item is selected, the following screen is displayed:

99 FORTRAN Load
File Name?

Enter the file name which contains the executable image. For
example, if the file TESTEXE was previously saved using item 5 on
the main menu, it will be reloaded if the file name:

DSK1.TESTEXE

is entered (assuming that the file is on a disk in disk drive 1).

After a program is loaded, it can then be executed using item 4
(RUN), or run with the debugger (item 5) on the menu.

The program may also be loaded and run by exiting the 99 FORTRAN
package, and specifying the file name in the Editor/Assembler option
5 "RUN PROGRAM FILE

SECTION 5 - LINKER/LOAD/RUN Operations p a g e 05-9

5.3 RUN, RUN/DEBUG Operation

This section discusses how to run a FORTRAN program after it has been
compiled and linked. It also discusses how to run the program under
the symbolic debugger.

Running a FORTRAN program is quite different when using the MDOS GENEVE
implementation of the FORTRAN compiler, and when using the TI-99 GPL
implementation.

5.3.1 TI-99 GPL Invocation

Items 4 and 5 on the menu specifies running of a FORTRAN program which
has been previously loaded (item 6) or linked (item 3).

Selecting item 4 on the menu will cause one file (FORTRAN execution
support) to be loaded, the screen to be cleared, and the execution of
your program to begin.

You can also run your FORTRAN program by using item 5 on the
Editor/Assembler main menu, RUN PROGRAM FILE. To use this option,
select item 5, and enter the name of the FORTRAN execution file
specified in the linker as the file to load and run.

Selecting item 5 on the FORTRAN main menu will cause two files (FORTRAN
execution support and the symbolic FORTRAN debugger) to be loaded, and
the debugger to be initiated. In order to use the debugger, you must
be using the mini-memory module, or have at least 4096 bytes of free
memory in ram (the spare area on the link map musts be at least
•lOOO'X).

Refer to section 6 for more information about the debugger.

5.3.2 MDOS GENEVE Invocation

When using the MDOS implementation, a FORTRAN program is initiated by
typing the executable program name at the command line prompt, just as
you would initiate any MDOS command or task. The FORTRAN program will
be loaded, and execution will begin.

For example, if your executable file name you specified when linking
the program was "A:TESTEXE", then you could type the following at the
A: prompt to run the program:

TESTEXE

To run the program under the debugger, you would specify the debugger
task, followed by any command line options you may have for your
FORTRAN program, as follows:

FDEB (command line options)

You would then load your task using the "L" command of the debugger,
i.e.:

SECTION 5 - LINhi-.K/LOAD/RUN Operations Page 05-10

]L TESTEXE

Refer to section 6 for more information on using the debugger.

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-11

5.3.3 Execution Errors

The following types of execution errors are detectable by the FORTRAN
execution support package:

1. Bad input/output (such as typing in a bad character, or
attempting to read a non-existent file).

2. Subscript error checking (when your program is compiled using
the SC option).

3. Attempting to run a program which has compilation errors.

4. Illegal usage of FORMAT statements.

5. Bad values being passed to library routines.

When an error is detected by the FORTRAN execution support package, an
error message is displayed on the screen in the following format:

* FORTRAN Error xx §yyyy

* l=aaaa 2=bbbb 3=cccc

where:

xx - is a two character error identifier as described below,
Syyyy ~ ifi t n e absolute hexadecimal memory location within your
program where the error occured,

aaaa - contains the absolute hexadecimal memory address start
of the data area for the module in which the error occurred
(refer to the link map), and

bbbb and cccc - may or may not be useful, depending on the type
of error. These two fields are described in detail for each
error message.

The absolute memory address can be translated into a location within
your program by the following procedure:

1. Look at the link map for the location previous to the address
where the error occured. This defines the module, and starting
address of the module, in which the error occurred.

2. Subtract the address given in the error message from the starting
address of the module. This gives the offset within the module
where the error occurred.

3. Look at the listing of the module, in the allocation labels
offset for an address lower than that in (2), and greater than that
in (2). This gives you the range of where the error occurred.

4. If you have an OB (hexadecimal object) listing of your program,
the statement in error can be located precisely by looking at the
starting offset of each statement and comparing it to (2) above.

SECTION 5 - LINKKR/LOAD/RUN Operations Page 05-12

5. For example, the error message:

* FORTRAN Error NE #A362
* 1=FD60 2=0000 3=0000

was encountered. Inspecting the link map, it was determined that
module ERRORPR started at location A300, and therefore the error
occurred within that module. Subtracting the error address given
(A362) from the starting address (A300), it was found that the error
occurred at offset 62 in the ERRORPR module.

Inspecting the Label allocation map for module ERRORPR, it was
determined that label 100 started at location A35A, and label 120
was at location A380. Therefore, the error occured between these
two labels.

Note that 6ince this was a FORMAT statement nest error (NE), the
error must have occurred on a READ or WRITE statement.

5.3.4 Debugger Handled Errors

If your program was initiated using item 5 (run/debug), then the
debugger will be called after the error is displayed. If a symbol file
has been loaded into the debugger (see section 6), then a traceback of
the error will be displayed as follows:

!FORTRAN Error xxxx, WP=yyyy, SR=zzzz

Locn Module Line Label
nnnn mmmmmmmnunm 1111 aaaaa

where:

xxxx - iB the hexadecimal location at which the error occurred.

yyyy - is the hexadecimal workspace pointer (usually 8300).

zzzz - is the hexadecimal status register.

nnnn - is the hexadecimal location in this module.

mmmmmmmmmm - is the module name in which the error occurred.

1111 - is the decimal line number at which the error occurred.

aaaaa - is the decimal label (if any), at which the error
occurred.

If the error occurred in a low level subroutine within the program,
then a traceback (up to ten levels) is displayed which shows where each
subroutine was called.

Using the previous example, the following traceback is typical of what
would be displayed on an execution time error:

SECTION 5 - LINKER/LOAD/RUN Operations P a g e 05-13

IFORTRAN Error A362, WP=8300, SR=0002

Locn Module Line Label
A362 ERRORPR 25 0000
A2A0 TEST 102 0100

The traceback always terminates after 10 levels, or when the main
program is displayed.

Quitting from the debugger will force an unconditional return to the
main menu. You cannot continue your program from a debugger handled
error.

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-14

5.3.5 Execution Error Codes

The following are the two letter error codes displayed when an
execution error occurs, their meanings, the corrective action taken for
each error, and the meanings of the values bbbb and cccc displayed.

AE - Argument Error
An argument was needed by the called subroutine, and it was not
provided by the calling program/subprogram.

Check the calling seguence for the called subroutine carefully
with this manual.

Registers bbbb and cccc are useless. The reguest is ignored.

BC - Bad Character
An illegal character was encountered during input string
processing. The valid characters (for each type of input) are:
- A or R: any ASCII character
- Z: numbers 0 to 9, letters A to F
- I: numbers 0 to 9
- F,E,D: numbers 0 to 9, decimal pt, E or D, + or -

Values bbbb and cccc are useless.

If the ERR= label is present, the error action address is
taken. Otherwise, execution continues with the next statement.

BF - Bad Number of Files Specified.
In the CALL FILES routine, the number of files specified was
not in the range of 1 to 9.

Values bbbb and cccc contain the return address and the bad
value. The reguest is ignored.

CL - Bad Color Specified
The color value passed to the COLOR, SCREEN, or SPRITE
subroutine was not a number between 1 and 16.

Alternately, under MDOS mode, the color value passed to the
SETPIX routine was not in the range of 0 to 255.

Values bbbb and cccc contain the return address and the bad
value. The reguest is ignored.

BM - Bad Mode
The graphics MODE specified in the CALL SETMOD subroutine is
not in the range of 0 to 9 (inclusive).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-15

CO - Bad Column Value Specified
The column value passed to the GCHAR, HCHAR, or VCHAR
subroutine was not a number between 1 and 32 (for 32 column
mode), or 1 and 40 (for 40 column mode), or 1 and 80 (for 80
column mode).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

CS - Bad Character Set Number
The character set number passed to the COLOR subroutine was not
a value between 1 and 28.

Values bbbb and cccc " contain the return address and the bad
value. The request is ignored.

CV - Bad Column Velocity Value
The column velocity passed to the SPRITE or MOTION subroutine
was not between -128 and 127.

Values bbbb and cccc contain the return address and bad value.
The request is ignored.

DC - Bad Dot Column
The dot column value passed to the SPRITE subroutine was not a
value between 1 and 255.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

DR - Bad Dot Row
The dot row value passed to the SPRITE subroutine was not a
value between 1 and 192.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

EC - Error Call
An error condition detected by the compiler has occured. This
is usually caused by your program containing source errors.
Check your source for compile time errors and correct them.

Values bbbb and cccc are useless.

This error forces an unconditional return to the main menu or
to the MDOS prompt.

IC - Illegal FORMAT Character
An illegal character was found in the specified FORMAT
statement.

SECTION 5 - LINkbh/LOAD/RUN Operations Page 05-16

Values bbbb and cccc are useless.

If ERR= label present, the error action is taken. Otherwise,
continues on to the next statement.

II - Input for Output item
A READ statement had a FORMAT code which is only for output,
such as string (' '), C, M.

Values bbbb and cccc are useless.

This error forces an unconditional return to the main menu or
to the MDOS prompt.

10 - I/O Error
An input/output error occurred, and the program had no error
transfer statement label (ERR=label) in the associated read/
write statement. The error number is returned in status, as
follows:

0. No error
1. Bad device name
2. Device is write protected
3. Bad open attribute such as incorrect file type, incorrect
record length, incorrect I/O mode, or no records in a relative
file.
4. Illegal operation, an operation not supported on the
peripheral or a conflict with the open attributes.
5. Out of table or buffer space
6. Attempt to read past end of file. Also given for non-
existant records in a relative record file.
7. Device Error. Covers all hard device errors such as parity
and bad medium errors.
8. File error such as program/data file mismatch, non-existing
file opened in INPUT mode, etc.
9. CRT only. Fctn/Back was depressed.
10. CRT only. Fctn/Redo was depressed.

Value bbbb is the error number (in hexadecimal) from above.

Value cccc is the device number (in hexadecimal) on which the
error occurred.

IR - Input Item Integer for Real Format

The argument in a read or write statement was integer, but the
FORMAT statement specified F, D, or E processing. The argument
item must be of type single precision or double precision for
F, D, or E processing.

Values bbbb and cccc are useless.

The error forces an unconditional return to the main menu, or

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-17

to the MDOS prompt.

IV - Illegal Character Value
The character value passed to the CHAR or CHARPA subroutine is
not between 1 to 255; or the character value passed to the
SPCHAR or SPRITE subroutine is not between 128 and 255.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

KE - Bad Keyboard Unit Number
The keyboard unit number passed to the KEY subroutine is not
between 0 and 5; or .the Keyboard unit number passed to the
JOYST subroutine is not 1 or 2 (for left or right keyboard).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

MF - Bad Magnification Factor
The magnification factor passed to the MAGNIF subroutine is not
1, 2, 3, or 4.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

MO - MDOS Only
The requested subroutine call is not available in the TI-99 GPL
implementation of 99 FORTRAN, it is only available in the MDOS
GENEVE implementation.

Values bbbb and cccc are useless.

The request is ignored.

NE - Nest Error
The FORMAT statement parenthesis were nested too deeply. A
maximum of 3 left /right parenthesis are allowed.

Values bbbb and cccc are useless.

This error forces and unconditional return to the main menu or
to the MDOS prompt.

NR - N Processing Error
An error occured during the processing of an "N" FORMAT
specification. The following error checks are performed:

The n value cannot be negative
- I/O list item must be integer

Values bbbb and cccc: are useless.

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-18

This error forces an unconditional return to the main menu or
to the MDOS prompt.

OB - Bad Byte Count in OPEN
A bad byte count (not between 1 and 255) was passed to the OPEN
subroutine.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

OD - Bad Display Flag in OPEN
The display/internal flag passed to the OPEN subroutine was not
0 (display) or 1 (internal).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

01 - Bad Inflg in OPEN
The input flag passed to the OPEN subroutine was not 0
(update), 1 (output), 2 (input), or 3 (append).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

OR - Bad Relflag Flag in OPEN
The relflag passed to the OPEN subroutine was not 0 (sequential
file) or 1 (relative file).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

OV - Bad Varflag Flag in OPEN
The varflag passed to the OPEN subroutine was not 0 (fixed
length records) or 1 (variable length records).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

0# - Bad Device Number in OPEN
The device number passed to the OPEN subroutine was zero.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

PA - Bad Pallette Number
The pallette number passed to the SETPAL subroutine was not in
the range of 0 to 15 (inclusive).

Values bbbb and cccc contain the return address and the value

ACTION 5 - LINKER/LOAD/RUN Operations Page 05-19

passed.

The request is ignored.

RG - Bad Red, Green, or Blue Color

The color value passed to the SETPAL subroutine was not in the
range of 0 to 7 (inclusive).

Values bbbb and cccc contain the return address and the bad
color value.

The request is ignored.

RI - Real item for integer
A FORMAT statement specified integer (I) processing, but the
list item was real (single or double precision).

Values bbbb and cccc are useless.

This error forces an unconditional return to the main menu or
to the MDOS main prompt.

RO - Bad Row Number
The row number passed to the GCHAR, HCHAR, VCHAR, or SETPOS
subroutine was not between the values of 1 to 24 (inclusive).

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

RP - Bad Number of Repetitions
The number of repetitions specified in the HCHAR or VCHAR
subroutine caused the specified character to go off the screen.

Values bbbb and cccc contain the return address and the bad
value. The subroutine terminates when the off-screen condition
is detected.

RV - Bad Row Velocity
The row velocity value passed to the SPRITE or MOTION
subroutine was not between the values of -128 to 127.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

S4 - Bad Subroutine Call in 40 Column Mode

A call was made to one of the following subroutines:

SPRITE, DELSPR, SPCHAR, POSITI, MOTION, MAGNIF, or COLOR

while the screen was in 40 column mode. Sprites are illegal in

SECTION 5 - LINKER/i.OAD/RUN Operations Page 05-20

40 column mode, as well as character color groups.

Value bbbb contains the return address. Value cccc is useless.
The request is ignored.

SA - Bad Shift Amount
The shift amount passed to the ISHFT function was not in the
range of -16 to +16.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

\
SC - Subscript Error

An error occurred during subscript array processing where the
specified subscript was out of bounds with the dimensioned
range of the array. Will only occur if the program was
compiled with the 'SC option.

Value bbbb is the base address of the array (for non-adjustable
array processing only).

SD - Sound Duration
The sound duration argument passed to the CALL SOUND routine is
not in the range of 1 to 4250, or -1 to -4250.

Values bbbb and cccc are useless. The request is ignored.

SE - Subroutine Error
A linkage to an unresolved (in link) or badly coded assembly
language subroutine was attempted. This could be the result of
the routine not being linked properly during the linkage step
(check for unresolved references), the subroutine being written
over by errant code, or a bad assembly language subroutine
(first word not zero or negative).

Value bbbb contains the offending first word of the subroutine.
Value cccc is useless. The request is ignored.

SF - Bad Sound Frequency
The frequency argument passed to the CALL SOUND routine is not
in the range of -8 to -1 (for NOISE arguments) or 110 to 32767
(for frequency).

Values bbbb and cccc are useless. The request is ignored.

SR - Bad Sprite Number
The specified sprite in CALL SOUND, CALL MOTION, CALL POSITI,
or CALL DELSPR is not between 1 and 32, inclusive.

Value bbbb and cccc are useless. The request is ignored.

SECTION 5 - LINKER/LOAD/RUN Operations Page 05-21

SV - Bad SOUND Volume
The volume argument for the CALL SOUND routine is not in the
range of 0 to 30.

Values bbbb and cccc are useless. The reguest is ignored.

VE - VDP Access Error

The VDP location argument passed to the VMBR, VMBW, LVMBR, or
LVMBW subroutine is out of range.

The allowable range for VMBR and VMBW is from z'0000' to
z'3fff. The allowable range using LVMBR and LVMBW i6 from
z'00000000' to z'OOOlffff.

Value bbbb contains the return address. Value cccc contains
either the bad value (for VMBR/VMBW) or the bad bank code
number (for LVMBR/LVMBW). The bank code is the high four
digits of the passed integer *4 address (e.g. 2 for z'2ffff).

The reguest is ignored.

XC - Bad X Coordinate
The passed X coordinate value is not in the range of 0 to 511,
for the SETPIX or GETPIX subroutine.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

YC - Bad Y Coordinate
The passed Y coordinate value is not in the range of 0 to 102 3,
for the SETPIX or GETPIX subroutine.

Values bbbb and cccc contain the return address and the bad
value. The request is ignored.

SECTION 6 - SYMBOLIC DEBUGGER Page 06-1

6.0 Introduction

After you have edited, compiled, linked, and run your FORTRAN program,
it is likely that the program does not do what you want it to. You
must now "debug" the program, or remove the errors.

Before using the debugger, there are several steps which may be useful
in debugging your program. These steps include:

1. Check the variable allocation map at the end of each module.
Do you recognize all of the variables listed? If not, it is
likely that you misspelled a variable somewhere.

2. A well-commented program will assist you in debugging.
Comments add very little to the compilation time of a program,
and unlike BASIC, add nothing to the execution time.

3. Temporary debug WRITE statements (perhaps compiled with the
"D" mode so they do not have to be removed later) will help you
follow the flow of the program.

4. You may want to sit down with the listing away from the
computer and "walk-through" your program.

The above basic techniques will allow you to solve most of your
programming bugs. If you still cannot find the problem, you need to
use the debugger.

The debugger allows you to find errors in your program while it is
actually running. You can read and write memory values, inspect and
modify variable values, inspect and modify the program's workspace, and
place breakpoints in your program which halt the program during
execution.

The MDOS implementation of the debugger has been extended to allow you
to inspect (list) selected portions of your source file while in the
debugger, to disassemble your object code in normal Assembly language,
to display and modify memory in byte, word, and longword formatB, and
to display help information.

6.1 Debugger Preparation

Before using the debugger, compile the routines which you want to debug
with the "DB" option. This will cause the compiler to produce symbol
definitions for variables names, line numbers, and labels as part of
the program's object.

When the program is linked, you will be requested to supply a file name
for the symbol file. For example, if you have a program called TEST,
you may want to call the files as follows:

Input File: DSK1.TEST
Object File: DSK1.TESTOBJ
Symbol File: DSK1.TESTSYM
Execution File: DSK1.TESTEXE

SECTION 6 - SYMBOLIC DEBUGGER Page 06-2

After linking your program, load and run your program by selecting item
5 (RUN/DEBUG) on the FORTRAN Main Menu (TI-99 GPL implementation), or
by entering the following command on your MOOS command line (MDOS
implementation):

PDEB <command line options>

Note the command line options you should enter here are NOT for the
debugger, but instead are for your FORTRAN program.

Once the debugger has been initiated, the screen will clear, and the
following line will be displayed:

99/9640 FORTRAN Symbolic Debugger V4.2
]

The symbolic debugger is now ready to accept commands. The first step
at this point would be to use the "L" command to load your symbol file,
and if you are using the MDOS implementation, to load your FORTRAN task
and optionally your source files.

When using the MDOS implementation of the debugger, you may enter a
question mark to obtain help information. For example, to obtain
information on the available commands, you could type:

and a list of commands would be displayed. To obtain help on the
MEMORY command, you could type:

M ?

and specific information about the usage of the memory command would be
displayed. This is NOT available when using the TI-99 implementation
of the debugger.

To execute your program, use the "GH, GO command.

6.2 Debugger Memory Usage

Both the TI-99 GPL and MDOS implementations of the debugger require
additional memory to run. The TI-99 GPL implementation uses memory
space that either your task did not need, or that is available due to
the mini-memory module. The MDOS implementation of the symbolic
debugger pages in additional memory as needed.

6.2.1 TI-99 GPL Memory Usage

The TI-99 GPL symbolic debugger uses additional memory in CPU and VDP
ram. It needs at least four Kbytes ('lOOO'X bytes) of storage in CPU
ram, and a variable amount of storage in VDP ram, depending on the size
of the symbol file.

If you are running with the Mini-Memory module, the debugger will

?

SECTION 6 - SYMBOLIC DEBUGGER Page 06-3

locate within the module (memory locations '7000'X to '7FFF'X). This
area is not normally used by your FORTRAN program unless you are doing
your own LOAD calls. If you are not running with the Mini-Memory
module, then the debugger will be located between the logic area end
and data area start in high ram (in the spare area on the Linker map).

The debugger uses '400'X bytes of VDP memory just below the start of
the I/O buffer spaces. To determine what address this is, examine
location '201A'X in cpu ram. Subtract '400'X bytes from this. The
result is the start of the debugger save area.

The debugger uses a variable amount of space (depending on the size of
the symbol file) in VDP ram starting at address '1000'X. If the symbol
file cannot fit between address '1000'X and the start of the debugger
save area, an error message will be displayed when the symbol file is
loaded.

6.2.2 MDOS Memory Usage

The MDOS implementation of the debugger uses at least 128kbytes of
memory for the debugger and user task. If you are also including a
symbol file, then you may need more than 128kbytes of memory. If you
are also including source files, you will need more than 128kbytes of
memory, up to a maximum of 256kbytes.

This means to run the symbolic debugger, you may need to reduce the
size of your RAM disk in your AUTOEXEC file, or remove the TIMODE
statement from the AUTOEXEC file.

When initially loaded, the debugger is placed into the first 64kbyte
memory bank (addresses z'00000' to z'Offff). When you use the "L"
(Load) command, your FORTRAN task is loaded into the second 64kbyte
memory bank (addresses z'10000' to z'lffff). The symbol file is
loaded either in spare memory located in the second memory bank
(z* 10000' to z'lffff) or into the third 64kbyte memory bank (z'20000'
to z'2ffff). The source files are always loaded into the third 64k
memory bank (z'30000' to z'3ffff).

If your source files exceed the 128kbytes allotted in the third and
fourth memory banks, then an error message will be displayed when
loading the source files. This would only occur on extremely large
programs, and the solution would be to only load source files for the
sources you are debugging.

When your user task is started using the G (GO) command, then the
debugger and user task are "swapped" in the first two memory banks.
Your program then executes in the first memory bank until a breakpoint,
and execution error, or a stop or call exit statement is executed. The
"swap" is again performed, and the debugger is reentered.

The debugger also uses the area from z'leOOO' to z'lffff in VDP memory
for its screen image (note that the debugger defines its own screen
outside of MDOS). MDOS does not normally use this area.

SECTION 6 - SYMBOLIC DEBUGGER Page 06-4

6.3 General Syntax

The debugger syntax is a single letter command, followed by one or more
optional arguments. Each argument must be seperated by at least one
space character.

If you specify too many arguments or too few arguments in a command
line, then an error will be displayed.

The debugger accepts as arguments hexadecimal constants, integer
constants and symbol constants. The MOOS implementation of the
debugger also accepts string constants.

Hexadecimal constants are specified as a normal hexadecimal number,
e.g.:

ABC
12AB
1

Integer constants can be specified by preceding them with the letter
•I', i.e.:

110
1-16

The MDOS implementation of the debugger supports longword forms of the
hexadecimal and integer constants, i.e.:

ABCDEF12 3
112848623

The MDOS implementation of the debugger also supports string constants,
specified as a guote character, an ascii string, and ended by a quote
character:

•GENEVE'
•LGMA'

All commands require that the ENTER button be pressed after the end of
the command. This is different than the debugger in the TI-99 GPL
Editor/Assembler package.

As an example of value specification, the command:

H ABCD EF01

would be valid, as ABCD and EF01 are both hexadecimal numbers. The
command:

H 11234 16789

would also be valid, as 1234 and 6789 are both valid decimal numbers.
The command:

H IABCD

"SECTION 6 - SYMBOLIC DEBUGGER Page 06-5

would not be valid, however, as ABCD is not a valid decimal number.

6.4 Specifying Symbols

Memory locations can be referred to by a symbol name. A symbol can be
a variable name, a line number, or a FORTRAN statement label. A symbol
can be used on a command line in the same way as a value, but the
symbol name must be preceded by a special character, depending on the
symbol type, as follows:

&mmnunmmmmm - Specifies a variable name mmmmmmmmm.

%1111 - Specifies a line number 1111.

•aaaaa - Specifies a FORTRAN label aaaaa.

For example, the following are all valid symbol specifications
(assuming that the symbols exist in the symbol file):

M &ICHAR (specifies FORTRAN variable ICHAR)
B %20 (specifies line number 20)
B *1000 (specifies statement label 1000)

6.5 Debugger Commands

The following is a summary of the available commands:

Letter Description

B Remove/Add Breakpoints
M Memory Inspect/Change
G GO Program into Execution
Q Quit Debugger
R Inspect/Change WP, PC, or SR
T Trade Screen
W Inspect/Change Workspace Registers
H Hexadecimal Arithmetic
L Load File
S Select Module Scope
X Set X Bias
Y Set Y Bias
Z Set Z Bias

The following are commands which are only available in the MDOS
implementation of the FORTRAN symbolic debugger

Letter Description

D Disassemble at Address
P Parameter Display
V View Source Module
? Display Help Information

SECTION 6 - SYMBOLIC DEBUGGER Page 06-6

6.5.1 Load Task/Symbol/Source Files

The command letter L allows you to load a new symbol file into the
debugger. For the MDOS implementation, it also allows you to load in
the FORTRAN task and optionally source files.

This command is generally only executed once per debugging session, at
the beginning of the session.

There are different syntaxes depending on whether you are using the
TI-99 GPL implementation of the debugger or the MDOS implementation of
the debugger.

«
TI-99 GPL Implementation

Using the TI-99 GPL implementation, the L command is used strictly to
load in the symbol file. Since the symbol file is stored in volatile
VDP ram, it must be reloaded with each exit from the program (back to
the main menu). After typing the command letter L, and ENTER, the
following prompt will be displayed:

Symbol File Name?
>

Enter the disk file name of the symbol file. For example, if the
symbol file name specified in the linker was DSK1 .TESTSYM, the the
following command sequence will load the symbol file:

]L
Symbol File Name?
>DSK1.TESTSYM

If there is not enough room for the symbol file in vdp ram, an input/
output error will result.

MPPS implementation

The command letter L under MDOS is extended to not only allow the
loading of a symbol file, but also to load the FORTRAN task to be
debugged, and optionally load any source files which may then be viewed
using the "V" command during the debug session.

The file name for the FORTRAN task MUST be specified in the command
line as the first parameter. The optional file name for the symbol
file MUST be specified next, followed by any source files you may wish
to include.

The format for the command is:

L Task [symbol file] (source file 1]...[source file n]

where:

Task : ie the first file name of the FORTRAN

SECTION 6 - SYMBOLIC DEBUGGER Page 06-7

task to be debugged, produced by the
FORTRAN linker.

symbol_file : is the file name of the symbol file
_ produced by the FORTRAN linker, and

sourcefilex : is up to eight additional source files
which you may specify for the debugger
to read in for use with the VIEW command.

The FORTRAN task is loaded in its entirety by the debugger. For
example, if you linked a FORTRAN task, which produced three executable
files: TESTEXE, TESTEXF, and TESTEXG, you could specify a command line
of:

L TESTEXE

and all three files would be loaded automatically.

The symbol file is the name of the symbol file produced by the linker.
For example, if you linked a FORTRAN task, as above, and produced a
symbol file with the /S option of TESTSYM, you could specify:

L TESTEXE TESTSYM

If the original source file was made up of several source files called
TESTA, TESTB, and TESTC, you could specify:

L TESTEXE TESTSYM TESTA TESTB TESTC

Special notes concerning the use of the L command:

1. Do NOT put any INCLUDED files on this command line (those
files you may have specified in your program source with the
FORTRAN INCLUDE statement). The INCLUDE files will be read in
automatically as called for in your program source.

2. Your MAIN program must be the first source file specified on
the command line. It MUST be included if your are including any
source files, and it MUST be first.

3. It is important that your FORTRAN program being debugged not
attempt to access memory locations less than z*40000*, or else
the debugger will not operate properly.

4. As the source files are loaded, the FORTRAN statements are
parsed by the debugger in the same manner as the FORTRAN compiler
parses the statements. The parser within the debugger is
somewhat simplified, however, and it is important that a PROGRAM,
SUBROUTINE, FUNCTION, or INCLUDE statement be totally contained
on a single source line. For example, the statement:

PROGRAM TEST

would be parsed correctly by the debugger, whereas the statement:

SECTION 6 - SYMBOLIC DEBUGGER Page 06-8

PROGRAM
+ TEST

would not, even though both are perfectly
statements.

valid FORTRAN

5. Loaded SOURCE modules must match the loaded symbol file. Do
not attempt to load any source modules which are from a different
program than you are debugging, or an error message will result.

6. Assembly language source cannot be included in the debugger,
since assembly object contains no debug information. Note that
the disassembly feature of the MDOS debugger provides you with
much of the same capability.

6.5.2 Select Module

The single command letter S allows you to select the module which you
wish to place breakpoints or examine/modify variables.

After a symbol file has been loaded using the L command, the debugger
automatically selects the FORTRAN main program module. If you wish to
debug other modules, you must select them using the S command.

For example, the program you are debugging has two parts, a main
program called TEST and a subroutine called ERRORPR. To select the
subroutine for symbol file access, you would use the statement:

S ERRORPR

After issuing the command, you can then access all of the symbols
related to the ERRORPR subroutine, including local and common
variables, line numbers, and statement labels.

To reselect the main program for access, you would type:

S TEST

6.5.3 Remove/Add Breakpoints

The command letter B allows you to add a breakpoint, remove a
breakpoint, or list the current open breakpoints. When a breakpoint is
encountered by the computer, the debugger is called, and the breakpoint
is removed. At this time the contents of the workspaces, memory,
program variables, and registers can be inspected or altered using any
of the other debugger commands. In addition, other breakpoints can be
entered.

It is important that you always place a breakpoint on an executable
instruction, rather than a data item. The best way to do this is to
always place the breakpoint on the first word of the start of a FORTRAN
statement, which will always be an instruction.

Adding a breakpoijiti

IECTION 6 - SYMBOLIC DEBUGGER Page 06-9

To add a breakpoint, you enter the command "B", followed by an absolute
memory address or symbol name. For example, the command:

B A360

would set a breakpoint at memory address A360.

The commands:

B %25
B *9100

would cause breakpoints to be emplaced on line number 25 and statement
label 9100.

Removing a breakpoint:

To remove a breakpoint, you enter the command "B", followed by an
absolute memory address or symbol name, and the letter -. For example:

B A360-

would remove the breakpoint from address A360, while the commands:

B %25-
B *9100-

would remove the breakpoints at line number 25 and statement label
9100.

Listing the current breakpoints

To list the current active breakpoints, you would enter the letter "B"
with no arguments. For example, the command:

B

might list the following:

Locn Module Line Label

A360 TEST 0 0000
A420 TEST 25 0000
A560 ERRORPR 18 9100

where:

Locn - is the absolute memory location at which the breakpoint
exists,

Module - is the module in which the breakpoint is contained,

SECTION 6 - SYMBOLIC DEBUGGER Page 06-10

Line - is the line number at which the breakpoint is emplaced
(0 if no symbol file present, or the line number cannot be
located), and

Label - is the FORTRAN statement label at the breakpoint (0000
if no label can be located at the breakpoint address).

Deleting All Breakpoints:

To delete all open breakpoints, enter the command letter "B", followed
by the minus sign (-). For example, the command:

B -

would remove all open breakpoints. (note the space between the B and
the minus sign, the space delimiter is required)

Breakpoint Execution:

When a breakpoint which you have set is encountered, the following
message will be displayed:

J FORTRAN Break @xxxx, WP=yyyy, SR=zzzz

The hexadecimal number 6xxxx is the location at which the breakpoint
occurred. The hexadecimal numbers yyyy and zzzz are the workspace
pointer and status register, respectively. A debugger (]) prompt also
appears, and you can enter debugger commands.

If a symbol file is present, the breakpoint will be listed in the same
format as the breakpoint list command.

SECTION 6 - SYMBOLIC DEBUGGER Page 06-11

6.5.4 Memory Inspect/Change

The command letter M allows you to display or modify cpu or vdp memory,
or display or modify local and common program variables.

If a single address is given, then the debugger enters the
inspect/modify mode. If a range of addresses are given, then the
debugger only displays the memory locations.

If a variable name symbol (one which begins with an ampersand, e.g.
SICHAR) is given, then the current value of the variable is displayed
in its corresponding type (Integer *1, Integer *2, Integer *4, Single
Precision, Double Precision, or Logical), and a new value can be
entered.

Inspect/Change Memory

If a single address is given, then the debugger displays the specified
memory address. If a number is then entered, the debugger modifies the
memory location specified. If "ENTER" is depressed with no value, then
the debugger displays the next location. If "FCTN/BACK" (f9 under
MDOS) is entered or a period (.) is entered, then the debugger returns
to command mode.

For example, the commands:

M A360
A360 = 1690
A362 = C155 C260
A364 = <FCTN/BACK or F9 pressed>

would modify location A362 to a C260 (wa6 C155). If the program line
number 25 was located at memory location A360, then the following
command would perform exactly the same operation:

M %25

If the memory address is specified with the letter V following, then
VDP memory is accessed rather than cpu memory. For example:

M 0000V
0000 = 3120 2020

would change the home position on the current TI-99 GPL screen from
•31'X (ASCII 1) to '20'X (ASCII blank).

MDOS Extensions to MEMORY Command

The MDOS implementation of the MEMORY command allows you to display or
modify memory in alternate byte and longword formats. The format of
the MEMORY command under MDOS with these qualifiers is:

M.B - Memory BYTE format
M.W - Memory WORD format

SECTION 6 - SYMBOLIC DEBUGGER Page 06-12

M.L - Memory LONGWORD format

For example, to display the same memory locations as before in byte
format, then the command:

M.B A360
A360 = 16
A361 = 90
A362 = C2
A363 = 60 .

Other extensions to the MDOS implementation of the MEMORY command
include:

1. The memory display command now displays sixteen bytes per
line.

2. The addresses to display or modify can be specified in
longword format. This allows you to access or display the full
128kbytes of VDP memory. For example, you may specify an address
of:

M 121ACV

when using the MDOS implementation of the debugger. This address
would be invalid in the TI-99 GPL implementation.

3. The <ESC> key can be used to abort long displays of memory.

4. Values may be entered as ASCII text strings (using quoted
strings), symbol locations, and integer values as well as
hexadecimal values.

5. A new value response qualifier (""••) allows you to "back-up"
to the previous modified value.

Inspect Memory

If a range of addresses are specified, then the memory locations
specified are displayed on the screen, along with the character
translation of the addresses. For example,

M 0000V 0300

would display the contents of VDP memory locations '0000'x to '0300'x,
which are the current screen contents. To display cpu memory, omit the
V in the range of examples, as follows:

M A000 A300

Displaying cpu memory can also be performed using the statement label
and the line number symbol arguments. For example, to display the
memory between statements 25 and 30, the following command could be
given:

SECTION 6 - SYMBOLIC DEBUGGER Page 06- 13

Type

Integer *1
Integer *2
Integer *4
Single Precision
Double Precision

No OualiJ

16
16
112
E13.6
D13.6

Eier Z Format

Z2
Z4
Z8
Z8
Z16

A Format

Al
A2
A4
A4
A8

Caution: no subscript checking is performed by the debugger. Therefore

M %25 %30

or to display from labels 9100 to 9200:

M *9100 *9200

Inspect/Alter Variables

To inspect or alter a variable, give as an argument to the M command a
variable name, preceded by an ampersand (&). For example, to display
the value of the integer variable ICHAR, the command:

M &ICHAR

could be given. This would cause the following to be displayed:

ICHAR(1) = 16706

The variable appears with a subscript (1), even though the variable may
not have been declared as an array. At this point, you may enter a new
value, press enter to see the next variable in the data area, or press
Fctn/Back (f9 using the MDOS implementation of the debugger) to return
to the debugger command mode.

Variables are normally displayed according to type. You can also
modify the display/alter mode by typing a comma, followed by the single
letter A or Z (for alphanumeric or hexadecimal) after the variable
name. For example, the command:

M &ICHAR,Z

would produce the display line:

ICHAR(1) = 4142

while the command line:

M &ICHAR,A

would produce the command line:

ICHAR(1) = AB

showing the results of the Z and A qualifiers. The following table
shows the display format for each type, with each qualifier:

SECTION 6 - SYMBOLIC DEBUGGER Page 06-14

it is possible to for you to enter a value in an array location which
is outside the bounds of the array. Check the bounds of the array very
closely before changing the array contents.

To save room in the symbol file, only the main program's definition of
the blank common block is saved. This requires that the main program
be compiled with the "DB" option, if you want to access variables in
common.

FORTRAN dummy names (arguments in subroutines and function subprograms)
are not saved in the symbol file, and as such are not accessable using
the dummy name. To examine/ alter the arguments in the subroutine,
select the calling program/subprogram and access it via the variable
name.

You cannot use a symbol value in entering a new value for a variable.
The new value must be the same in type as the displayed value. For
example, the command:

M & ICHAR
ICHAR(1) = 23

would be valid since the new value entered (23) is of the same type as
displayed (integer). However, the command:

M & ICHAR
ICHAR(1) = 1D2

would not be valid since the value entered (1D2) is hexadecimal and the
display type is integer.

The following are some examples of the extended MDOS modification
formats:

1. The following example modifies VDP memory mapped at location
z'400' in byte format. The user presses enter until location
z'402' is displayed, he/she then "backs-up" by typing a caret (")
and enter, redisplaying location 402. He/she then exits using a
period (.).

2. The following example shows integer format
using the 'I' format:

of modification.

M 400
400 AC16
402 4342

11231
'CB'

M.B
400
401
402
403
402

400
AC
16
41
42
43

• 1

1 I

•A'
•B'

•c

•c

2

2

SECTION 6 - SYMBOLIC DEBUGGER Page 06-15

6.5.5 Quit Command

The command letter Q causes the debugger to exit and return either to
the FORTRAN main menu (TI-99 GPL implementation), or return to the MDOS
command prompt (MDOS implementation)..

6.5.6 Inspect or Change WP, PC, SR

The command letter R shows the workspace pointer, program counter, and
status register and allows you to change their values. After you
display a register, you can alter it by entering a new value, followed
by ENTER.

The workspace pointer points to the program workspace. This value
should always be z'8300' under TI-99 GPL mode or z'fOOO' under MDOS
mode. It should never be changed.

The program counter points to where the program was executing when the
debugger was entered, and represents the breakpoint location.

The status register contains the status (logical greater than,
arithmetic greater than, egual, carry, overflow, odd parity, extended
operation, and interrupt mask) at the time of the breakpoint. These
are passed back to your program when the program is resumed.

Status Register:

0 1 2 3 4 5 6 7 8 9 A B C D E F

|L>|A>|EQ|C |OV|OP|X |--|--|--|--|--| INT. MASK|

where:

Name Bit Number Description

L>
A>
EQ
C
OV
OP
X
-
INT.
MASK

0
1
2
3
4
5
6
7-11
12- 15

Logical Greater Than
Arithmetic Greater Than
Equal To
Carry
Overflow
Odd Parity
Extended Operation
Reserved
Interrupt Mask

For example, the command:

R
WP = FC60 <ENTER pressed>
PC = A632 A600 <ENTER pressed>
SR = 8000 <ENTER pressed>

SECTION 6 - SYMBOLIC DEBUGGER Page 06-16

would modify the program counter to A600 (was A632). When the program
continues execution (by the Q or Quit command), it will resume
execution at location A600 rather than A632.

In the MDOS implementation of this command, the status register is
decoded and active flags within the 6tatus are displayed. For example,
a status register of z'3402' would be displayed as:

SR = 3402 / /EQ/C / /OV/ / / , level=2

which says that the EQual status bit is set, the Carry status bit is
set, the Overflow status bit is set, and the current interrupt level is
level 2.

6.5.7 Trade Screen

The command letter T trades the debugger screen for the screen as it
was when you entered the debugger. The current contents of the
debugger screen are lost.

For example, the command:

T

would remove the debugger screen, and replace it with the screen when
you entered the debugger. To return to the debugger screen, depress
any key.

6.5.8 Inspect/Change Workspace Registers

The command letter W displays all of your workspace registers, and
their values if no workspace register number is given. If a workspace
register number is given, it and it6 value are displayed and the value
can be changed. After changing the value, you can press ENTER to enter
the value and display the next workspace register. Pressing FCTN/BACK
(f9 under MDOS) will return you to command mode without changing its
value.

For example, the command:

W

would display all 16 registers, while:

W 1

would display only register 1, and also allow you to modify the
register.

The following describes FORTRAN'S usage of the sixteen registers:

R0, Rl, R4, R9, R12 : Temporaries
R2 : Dynamic Pointer

SECTION 6 - SYMBOLIC DEBUGGER Page 06-17

R3
R5, R6, R7, R8

RIO
Rll
R13, R14, R15

Points to start of data area/this module.
Extended Accumulator:
Integer *1 : R5 MSB
Integer *2 : R5
Integer *4 : R5, R6
Real *4 : R5, R6
Real *8 : R5, R6, R7, R8
Points to execution support package
Return for subroutine calls
Used for BLWP

6.5.9 Hexadecimal Arithmetic

The command letter H allows you to to add, subtract, multiply, divide
and display the decimal equivalent of the two values entered. For
example, the command:

H A 6

would display the following:

H1=000A H2=0006 Hl+H2=0010
Hl-H2=0004 H1*H2=0000 003C
Hl/H2=0001 R 0004
H1(I)= 10 H2(I)= 6

which represent the two values entered (HI and H2) in hexadecimal, the
sum, the difference, the product, the quotient, the remainder, and the
equivalent values in integer decimal.

This command can be used to perform hexadecimal to decimal conversions,
and vice versa. For example, the command:

H 123

would display the values:

Hl=0017 H2=0000 Hl+H2=0017
Hl-H2=0017 H1*H2=0000 0000
Hl/H2= 0000 R 0000
H1(I)= 23 H2(I)= 0

converting the decimal value 23 to its equivalent hexadecimal 17.

You can also use this command to translate symbols to their hexadecimal
and decimal memory locations. For example, the command:

H %25

would display the values:

H1=A360 H2=0000 H1+H2=A360
H1-H2=A360 H1*H2=0000 0000
Hl/H2= 0000 R 0000

SECTION 6 - SYMBOLIC DEBUGGER Page 0 6 - 1 8

H 1 (I) = - 2 3 7 1 2 H 2 (I) = 0

MDOS extensions to this command allow for integer *4 (longword)
arguments, and symbol/string formats of constant expressions.

6.5.10 GO Program into Execution

The G command letter specifies that the debugger is to start the
FORTRAN task into execution. If an address was specified in the
command line, then the program will start executing at that execution
address. If an address has NOT been specified, then the program will
start at the address specified in the current program counter PC (see R
command).

Command Format:

G [address]

where: address is an optional execution address.

Return from the GO command is via one of the three following
conditions:

1. A user emplaced breakpoint was encountered.

2. A FORTRAN execution error was detected, or

3. A FORTRAN STOP or CALL EXIT statement was executed.

The following are examples of the GO command usage:

G start execution at PC
G 0480 start execution at address >480
G %50 start execution at line 50
G 00 start execution at label 1000

6.5.11 X, Y, and Z Bias

Three new commands allow you to specify an offset in a specified
constant. These three commands are analogous to a "memory" button on a
calculator they remember a 16-bit (TI-99 GPL implementation) or a
32-bit (MDOS implementation) value which can be recalled later.

The command syntaxes are:

X value
Y value
Z value

For example, using the MDOS implementation of the symbolic debugger,
the following sets the X constant value to z'12341234':

"SECTION 6 - SYMBOLIC DEBUGGER Page 06-19

X 12341234

The following are other examples:

Z 1125 - set Z to integer 125
Y %15 - set Y to location of line 15
X 00 - set X to location of label 9100
X &XYZ - set X to location of variable XYZ

You can then use these constants in any expression:

M OX 20X - display memory from location 0+X
to location 20+X

B OX - put breakpoint on location 0+X

H 123X 124YZ - hexadecimal arithmetic on the
values 123+X, and 124+Y+Z.

6.5.12 Disassemble at Address

The command letter D allows you to disassemble code starting at the
specified start hexadecimal address, and continuing until the end
address specified. The command format is:

D start_address [endaddress]

If the Mend_addres8" parameter is not specified, then only ten bytes of
the code will be disassembled.

Note that the start_address and end_address can also be specified as
symbols. For example, to disassemble starting at line number 25 to
line number 30, you could enter:

D %25 %30

or to disassemble starting at FORTRAN label 100:

D 0

or to disassemble string at location >0480, and continuing to location
>7FF:

D 480 7FF

The disassembler will replace hexadecimal values with symbol names, as
follows:

a) line numbers are replaced by the % symbol, and the line
number. For example, if line number 143 was mapped at location
z'0464', then the following code:

BL §>0464

would be replaced by:

SECTION 6 - SYMBOLIC DEBUGGER Page 06-20

BL e%143

b) Variable names are replaced by the & symbol, and the variable
name itself. For example, if the variable "ITEST" were mapped at
location >EF10, then the code statement:

MOV §>EF10,R5

would be replaced by:

MOV &ITEST,R5

6.5.13 Viewing Source Files

The command letter V allows you to view the FORTRAN source files which
make up the FORTRAN program you are debugging. This is useful to
determine where breakpoints are to be placed, or where breakpoints have
occurred.

The VIEW command format is:

V startlinenumber [end_line_number]

or

V.D start_line_number [endlinenumber]

The command letter V alone specifies displaying line numbers, line
locations, and source lines only. The option command V.D specifies the
source listing is to be interspersed with disassembled object code.

Both the starting and ending line numbers are specified in decimal.
The ending line number argument is optional, and if omitted, only the
starting line will be displayed.

Only source lines within the currently selected source module can be
displayed. For example, to display lines 100 through 102, inclusive,
in module SYMLOAD, you might specify:

S SYMLOAD
V 100 110

100 04C2 if (numbyte .le. 0) then
101 04D0 call prnerr (-1)
102 04DA stop

To display the same lines with interspersed disassembly code, you might
specify:

V.D 100 102

100 04C2 if (numbyte .le. 0) then
04C2 04C5 CLR R5
04C4 1501 JGT e>04C8
04C6 0705 SETO R5

SECTION 6 - SYMBOLIC DEBUGGER Page 06-21

04C8 0505 NEG R5
04CA 1602 JNE §>04D0
04CC 0460 B e>04DE
04CE 04DE

101 04D0 call prnerr (-1)
04D0 06A0 BL 9PRNERR
04D2 84B8
04D4 0140
04D8 FFFF

102 04DA stop
04DA 06A0 BL SSTOP*
04DC 8078

6.5.14 Display Program Parameters

The command letter P allows you to display information about the
current debugging session. The letter P with no parameters is used to
display overall debugger information, whereas the command letter P
followed by a FORTRAN main program, subprogram, or assembly language
DEF symbol name will display known information about that particular
module.

The following is the syntax of the Parameter command:

P - displays overall debugger information
P modulename - displays information about the module

The following information is displayed in response to a command letter
P:

a) The name of the FORTRAN task loaded on command line

b) The load address of the symbol file (0 if none)

c) The name and module pointer of the currently selected module
(module scope)

d) The number of modules currently loaded in symbol/source files,
the name of each module, and position within the symbol/source
files.

The modules are shown in ascending location order, the order in
which they are loaded in memory. The main program module is
always first, followed by any FORTRAN function subprograms or
subroutines, and then followed by any assembly language
subroutines, including library routines.

The following information is displayed concerning an individual module:

a) The module name, and the starting location

b) FORTRAN variables, their starting address, the area in which
they are located (common or local to module), and the variable

SECTION 6 SYMBOLIC DEBUGGER Page 06-22

type.

c) FORTRAN line numbers and starting locations. Note that
FORTRAN does not save line numbers of comment lines, or line
numbers of continuation lines.

d) FORTRAN labels and starting locations.

The following are examples of using the command letter "P":

P
P TESTPROG

P SUB1

display overall information
display information about main
program called TESTPROG
display information about sub
program called SUB1

SECTION 7 - FORTRAN Library Page 07-1

7.0 Introduction

A FORTRAN library is made up of a number of pre-compiled FORTRAN
subroutines, FORTRAN function subprograms, and assembly language
subroutines. These routines are combined into a single library file
using the FORTRAN Librarian, FLIB.

The FORTRAN librarian is called differently when using the MDOS
implementation and when using the TI-99 GPL implementation.

The TI-99 GPL implementation of the FORTRAN librarian is called from
item 6 on the main FORTRAN menu (Librarian). After loading in several
files, the execution of the librarian is begun.

The MDOS implementation of the FORTRAN librarian is called by the MDOS
command FLIB. All parameters for FLIB are passed on the command line.

Three libraries are supplied for your use. These are:

FL - Main FORTRAN Library
ML - Single and Double Precision Math Library
GL - Graphics Library

The FL library is the main FORTRAN library. It provides many of the
basic necessary routines which allows your program to execute,
including interfaces for the STOP statement, the CALL statement, and
the like. You MUST reference the FL library in the linkage step to
resolve basic FORTRAN references made by your program.

The ML library contains single and double precision mathematical
functions, such as SIN, COS, DSIN, DCOS, etc. You will only need to
reference this library if you make reference to one of these higher
math routines. Note that the ML library makes reference to several
routines within the FL library. Therefore, it is most efficient to
reference the FL library FIRST when library files are called for in the
link step.

The GL library contains graphic and sprite routines. You will only
need to reference this library if you make reference to an extended
graphics or sprite routine.

The FORTRAN library consists of a number of pre-compiled subroutines
which can be automatically linked with your FORTRAN program. These
FUNCTION subprograms and subroutines provide frequently used
mathematical functions, and linkages to the sprite, sound, and graphics
capabilities in your computer.

The FORTRAN library routines are very similar to the routines in BASIC
and EXTENDED BASIC. This allows easy conversion of BASIC programs into
FORTRAN.

To use a routine in the FORTRAN library, reference the routine as
specified. When you link your program using the LINKER (item 3 on the
FORTRAN main menu for the TI-99 GPL implementation, or FLINK for the
MDOS version), you will be asked to scan the library. The MDOS
implementation scans the referenced library automatically, the TI-99

SECTION 7 - FORTRAN Library Page 07-2

GPL implementation will request the library names to scan. Simply
enter each library name in sequence (e.g. FL, then GL, then ML).

Be careful with declaring your function subprograms of the proper type
in your calling routine. For example, if you use the statement:

IMPLICIT INTEGER (A-Z)

in your program, and then U6ed the statement:

X = VAL (IARRAY)

then the VAL function, as well as the variable X must be declared of
type REAL explicitly, as follows:

REAL X,Y,VAL

7.1 FORTRAN Librarian

The FORTRAN Librarian allows you to create your own object library
files, which may then be used in conjunction with the FORTRAN linker to
link your program. The linker has two major functions:

LIST - List a library file
ADD - Create a new library file

To run the linker, then enter item 6 on the FORTRAN main menu, for the
TI-99 GPL implementation, or type the command FLIB if using the MDOS
implementation.

7.1.1 TI-99 GPL Invocation

After selecting item 6 on the FORTRAN main menu, the screen will clear,
and the menu:

FORTRAN Librarian V4.2

Press:

1. To List Library

2. To Create a New Library

3. Exit Librarian

Press 1, 2, or 3 depending on the desired function

Listing A..Library

After pressing 1, to list a library, the following prompts will be
displayed:

Enter Library File Name:

SECTION 7 - FORTRAN Library Page 07-3

Enter the name of the library file to list. For example, if the
FORTRAN library disk is in disk drive DSK1, then you may enter:

DSK1.FL

to list the default FORTRAN library.

The next prompt will request the device to print to, such as the CRT or
the default printer, or a specified printer:

Enter Device to List To:

If you wish to list to the screen, type in a device name of CRT. If
you wish to list to the default printer as specified in the preferences
menu, then just press enter. You may also enter a printer or file name
such as:

RS232/1.BA=4800
PIO
DSK1.LISTFILE

A listing of the file will then be produced.

Creating a New Library

When item 2, create a new library, is selected, then the screen will
clear and the prompt:

Enter Library File Name:

Enter the name of the library file to create. The next prompt:

Enter Name of Command File:

will be displayed. Enter the name of the file which contains a list of
the object files to be produced. Note that you may use a name of CRT
to indicate that the list is to be entered interactively on the screen.
Usually, this is a disk file which contains a list of other disk files,
such as:

DSK2.TESTOBJ
DSK2.0BJS

etc. Once this prompt has been entered, then the library will
automatically be created.

7.1.2 MDOS Invocation

To execute the FORTRAN librarian under MDOS, then use the command FLIB.
The following is the syntax of the FLIB command:

FLIB L[IST] /Iinput file [/PPR] FLIB A(DDJ
/Ooutputfile /C[command_file]

SECTION 7 - FORTRAN L i b r a r y P a g e 0 7 - 4

w h e r e :

LIST - lists the inputfile specified (optionally
to the printer if the /PPR and

ADD - creates a new outputfile library, given
a command file which has a list of file
names to be contained in the new library.

Listing Libraries

The LIST subcommand allows you to list the contents of already created
libraries, either to the screen or to the printer. For example:

FLIB LIST /IFL

will list the non-math FORTRAN library. To list the same library to
the printer, use the command:

FLIB LIST /IFL /PPR

Creating New Libraries

The ADD subcommand allows you to create entirely new object libraries.
For example, to create a new FORTRAN library called DL, given a command
file called BUILD, the following command could be used:

FLIB ADD /OB:DL /CA:BUILD

The file called BUILD is a display/var/80 file which contains a list of
file names to be included in the FORTRAN library. For example:

DSK5.ABS
DSK2.TESTOBJ2
A:PEEK
C:PEEKV
SCREEN

are all valid file names which might make up a BUILD file.

The files to be included may be assembly language modules (coded in
accordance with the methods described in this manual), or FORTRAN
moduleB (subroutines or function subprograms).

FORTRAN object files which contain multiple object modules can be
included in a library, and will be listed seperately on the library
listing. For example, a FORTRAN object file SUBS, which contains three
subroutines SUB1, SUB2, and SUB3, and inserted into a library using the
statement:

FLIB ADD /OUSERLIB /ICRT
SUBS
>EOD

could be listed using the command:

SECTION 7 - FORTRAN Library Page 07-5

0
4
12

4
8
7

SUB1
SUB2
SUB 3

SUB1,
SUB2,
SUB3,

SUB1
SUB2
SUB3

Once a user FORTRAN library has been created, it can be included in
your FORTRAN linker command line, e.g.:

FLINK /OTESTOBJ,OBJE /1FL,USERLIB DSK5.TESTEXE

7.1.3 FORTRAN Librarian Listing Example

The following is an example of a librarian listing:

Listing of FORTRAN Library File: FL
On: 11-27-88 14:58:00

Record Size Identifier Definitions

0
4
12

387

4
8
7

9

ABS
AINT
AMAMIO

•
•
.

WCHAR

ABS
AINT
AMAXO,

HCHAR,

AMINO

VCHAR

Total Number of Records in Library are: 397

The "Record" field indicates tfie record number (in 80-character record
lengths) of where this library module starts in the library file; the
"Size" field indicates the number of 80-character records contained;
the "Identifier" field is the identifier on the "IDT" source record of
an assembly language subroutine or subprogram, or the FORTRAN
subroutine or function name; and the "Definitions" field displays all
DEF type records in the object module. Note that assembly language
subprograms may have multiple definitions included in their module.

FLIB LIST /IUSERLIB

and would show the individual FORTRAN subroutines as:

Listing of FORTRAN Library File: USERLIB
On: 12-08-88 Time: 12:57:56

Record Size Identifier Definitions

SECTION 7 - FORTRAN Library Page 07-6

7.2 Mathematical Functions

The mathematical functions provide a wide range of commonly used
trigonometric, logorithmic, type conversion, logicial, hyperbolic,
memory access, and other miscellaneous functions. The following pages
describe the available routines, their definition, the number of
calling arguments, the argument type, the resulting type, and whether
or not the function reference generates inline code.

The routines are grouped by general function. These general functions
are:

a. Abso lute Value
b . Error Function
c . Maximums and Minimums
d. Truncation
e. Random Number Generator
f. Type Conversions
g. Remaindering
h. Logical Functions
i. Memory Access
j. Logical Shift
k. Logorithm
1. Trigonometric Functions
m. Hyperbolic Functions
n. Exponential Functions
o. Gamma Function
p. Positive Difference
g. Transfer of Sign

All of the routines following are INTRINSIC. That means that the
routines are known by the compiler, as well as routine type, the type
of the arguments, and whether the routine is generated as inline code
or not. Your program must agree with respect to the number of
arguments and the argument type. If you have a routine coded with the
same name as an INTRINSIC function, you must override the compiler
defaults by using the EXTERNAL statement.

The following are some examples of using the INTRINSIC Mathematical
Functions:

J
J
J
J
J
J
J
X
J
X
X
X
X

=
=
=
=
=
=
=
=
=
=
=
-
-

Example

ISHFT('5555'X,-8)
IAND ('AAAA'X, '5555'X)
IOR ('AAAA'X, '5555'X)
IEOR ('AAAA'X, '5555'X)
NOT ('AAAA'X)
IABS (-2)
IFIX (2.5)
FLOAT (2)
MOD (5, 2)
SQRT (2.0)
SIN (1.5708)
ATAN (0.0)
ALOG (2.718)

Result

'0055'X
0

'FFFF'X
•FFFF'X
•5555'X

2
2

2.0
1

1.4142
1.0

0.4140506
1.0

SECTION 7 - FORTRAN Library Page 07-7

The following are special notes regarding the following subprograms:

1. All angles are expressed in RADIANS.

2. All arguments of an intrinsic function must be of the same
type.

3. Per normal FORTRAN conventions (and as contrasted with BASIC),
the floating point to integer conversion routines do not round,
they truncate. Therefore, the expression:

I = IFIX (0.9)

will produce a value of 0 for I, not 1.

4. The intrinsic function calls must agree with the number of
arguments shown. In most cases, this is a fixed number of
arguments (e.g. 1 or 2). In the case of the MINIMUM and MAXIMUM
functions, then a variable number of arguments, from 2 to 10, are
allowed.

5. Many of the intrinsic functions actually generate inline code,
rather than calling a function subprogram. In this case, the
FUNCTION name (e.g. I AND) will be shown in the SUBPROGRAM
SUMMARY in the allocation map, but no reference will be
generated. The function name will not appear in the link map.

6. You can override the INTRINSIC definition of any function, as
long as you supply your own function subprogram module, by using
the EXTERNAL statement.

7. The following are the meanings of the letter designations
under argument and result types:

K Integer *1 (1 byte) argument
I Integer *2 (2 byte) argument
J Integer *4 (4 byte) argument
R Real *4 (Single Precision 4 byte) argument
D Real *8 (Double Precision 8 byte) argument

SECTION 7 - FORTRAN L i b r a r y Page 0 7 - 8

General
Function

Absolute
Value

Error
Function

1
Maximum
and

Minimum

Trunca
tion

Random
Number
Generator

Type
Conver
sions

Remain
dering

Routine
Name

KIABS
IABS
JIABS
ABS
DABS

ERF
DBRF

ERFC
DERFC

MAX
MAXO
AMAXO
MAX1
AMAX1
DMAX1

MIN
MINO
AMINO
MINI
AMIN1
DMIN1

AINT
DINT
INT
IDINT

I RAND

IFIX
FLOAT
SNGL
DBLE
DFLOAT

MOD
AMOD
DMOD

Definition 1

y = |x|

«-4/ '^ 1
y=max(xl,

... ,xn)

y=min(xl,
...,xn)

y=(sign of x)
*n, where n
is the lar
gest integer

<= to X

y = random(x)
where y is

in range:
0 <= y < x

Real to Int-
Int to Real
Dbl to Real
Real to Dbl
Int to Dbl

y = xl-int
(xl/x2) * x2

No. 1
Arguments |

1

1 1

1 1

2 to 10

1

1

1

2

Argument
Type

K
I
J
R
D

R
D

R
D

I
I
I
R
R
D

I
I
I
R
R
D

R
D
R
D

I

R
I
D
R
I

I
R
D

Result
Type

K
I
J
R
D

R
D

R
D

I
I
R
I
R
D

I
I
R
I
R
D

R
D
I
I

I

I
R
R
D
D

I
R
D

Inline?

Y
Y
Y
Y

N

N

N

N
N
Y
Y

N

Y

N

Page 07-9 SECTION 7 - FORTRAN Library

General
Function

Logical
Functions

Memory
Access

Square
Root

Logorithm

Trigono
metric
Functions

Routine
Name

KIAND
I AND
JI AND
KIOR
IOR
JIOR
KIEOR
IEOR
J IEOR
NOT

PEEK
PEEK I
PEEKK
PEEKJ

PEEKV
PEEKVI
PEEKVK
PEEKVJ

SQRT
DSQRT

A LOG
DLOG
ALOG2
DLOG2
ALOG10
DLOG10

SIN
DSIN
COS
DCOS
TAN
DTAN
COTAN
DCOTAN

ARSIN
DAS IN
ARCOS
DACOS
ATAN
DATAN

ATAN 2
DATAN2

Definition

y = a & b

y = a | b

y = xor(a,b)

y = -x

y = contents
of address x
(cpu or vdp)

y = x ** 0.5

y = ln(x)

y = log (x)
2

y = log (x)
10

sine (x)

cosine (x)

tangent (x)

co-tangent(x)

arc-sine(x)

arc-cosine(x)

arc-tangent(x)

arc-tangent(xl/
x2)

No.
Arguments

2

1

1

1

1

(radians)

1

result in
radians

2

Argument
Type

K
I
J
K
I
J
K
I
J
I

I
I
I
I

I
I
I
I

R

R
D
R
D
R
D

R
D
R
D
R
D
R
D

R
D
R
D
R
D

; I

Result
Type

K

J
K
I
J
K
I
J
I

I
I
K
J

I
I
K
J

R

R
D
R
D
R
D

R
D
R
D
D
D
R
D

R
D
R
D
R
D

D

Inline?1

Y

N

N 1

N

N

1

SECTION 7 - FORTRAN Library Page 07-10

General
Function

Hyperbolic
Functions

Exponen
tial
Functions

Gamma
Function

Positive
Differ
ence

Transfer
of
Sign

Logical
Shift

Routine
Name

SINH
DSINH
COSH
DCOSH
TANH
DTANH

ASINH
DASINH
ACOSH
DACOSH
ATANH
DATANH

EXP
DEXP
EXP2
OEXP2
EXP10
DEXP10

GAMMA
DGAMMA

ALGAMA
DLGAMA

IDIM
DIM
DDIM

I SIGN
SIGN
DSIGN

ISHFT

Definition

hyperbolic -
sine (x)

hyperbolic -
cosine(x)

hyperbolic -
tangent(x)

hyperbolic -
arc sine(x)
hyperbolic-
arc cosine(x)
hyperbolic-

arc-tangent(x)

x
y = e

X
y = 2

X
y = 10

y = r (x)

y = log(r(x))

y=xl-x2 if xl>x2
y= 0 if xl<=x2

y=abs(xl) if x2>0
-abs(xl) if x2<0

y=ishft(i,j)
shift i by j
bits, right
if j negative,
left if j pos
itive.

No.
Arguments

1

1

1

1

1

2

2

2

Argument
Type

R
D
R
D
R
D

R
D
R
D
R
D

R
D
R
D
R
D

R
D

R
D

I
R

I
R
D

I
1 to 16

or
-1 to-16

Result
Type

R
D
R
D
R
D

R
D
R
D
R
D

R
D
R
D
R
D

R
D

R
D

I
R

I
R
D

I

Inline?

N

N

N

N

N

N

SECTION 7 - FORTRAN Library Page 07-11

unit is a one word integer variable or constant which
contains the file number (must be non-zero).

name is a hollerith field containing the file name. It must
be terminated with an ASCII blank (• ' or ^O'X).

A special name exists for accessing the screen. If you
specify a name of "CRT", then the unit number specified will
be opened as the screen. Note that unit number 6 is assigned
to the screen by the FORTRAN execution support package.

inflag is a one word integer variable or constant which
defines the input/output mode of the file as follows:

0 - update (input and output)
1 - output only
2 - input only
3 - append (output to end of file)

disflag is a one word integer variable or constant which is
set as:

0 - display type file
1 - internal type file

varflag is a one word integer variable or constant which is
Bet as:

0 - fixed length records
1 - variable length records

relflag is a one word integer variable or constant which is
set as:

0 - sequential file
1 - random access file

where:

7.3 Input/Output Routines

The input/output routines allow you to open files, assign the files to
FORTRAN logical unit numbers, and to close and delete files.

7.3.1 CALL OPEN

CALL OPEN allows you to open a new file which accesses any Device
Service routine (excluding the cassette tape unit interface) under
TI-99 GPL, or any valid MDOS device name under MDOS, and assign the
file to a FORTRAN logical unit number so that it may be accessed using
standard FORTRAN READ/WRITE statements.

Calling Seguence:

CALL OPEN (Unit, Name, inflag, disflag, varflag,
relflag, bytecount, error)

SECTION 7 - FORTRAN Library Page 07-12

bytecount is a one word integer variable or constant which
defines the byte size of a logical record in the file. It
must be between 1 and 255 bytes.

error is a one word variable that returns the open error
status, as follows:

0 - no error
1 - bad device name
2 - write protected
3 - bad open attribute
4 - illegal operation
5 - out of table or buffer space
6 - read past end of file
7 - device error
8 - file error

For example, the statements:

INTEGER FILEID(8),ERROR
DATA FILEID / 16HRS232/1.BA=4800 /
CALL OPEN (3, FILEID, 1, 0, 1, 0, 96, ERROR)

will open the file "RS232/1 .BAM800" as FORTRAN unit number 3, an
output file, with display attributes, variable length records, a
maximum byte count of 96 bytes/record. If an error occurs, the
variable ERROR will be non-zero on return.

If you pass the OPEN subroutine a blank file name, it will open a null
file. Anything written to a null file will be discarded with no error
message, and anything read from a null file will be returned as a blank
record (Ascii blanks).

Devices opened under MDOS are parsed to their proper full name. For
example, if you open a file such as:

CALL OPEN (3, 'LGMA', 1, 0, 1, 0, 80, ERROR)

And the currently selected disk drive is drive A:, then the actual file
which is opened will be:

DSK1.LGMA

7.3.2 CALL CLOSE

The CALL CLOSE subroutine allows you to close a file previously opened
by the CALL OPEN statement. All files which you have opened in your
program should be closed (or deleted) before exiting your program

Calling Sequence:

CALL CLOSE (unit [,error])

where:

SECTION 7 - FORTRAN Library Page 07-13

CALL FILES (number files)

where:

number files is a one word integer variable or constant which
defines the number of files to open.

For example:

unit is a one word integer variable or constant which
describes the unit number to close (must be non-zero).

error is an optional one word integer variable which will
contain the error status of the close operation. The meaning
of the error status is the same as with the OPEN subroutine.

For example, the statement:

CALL CLOSE (3)

will close the file opened in the CALL OPEN example.

7.3.3 CALL DELETE

The CALL DELETE subroutine allows you to delete a file previously
opened by the CALL OPEN statement. All files which you have opened in
your program should be closed (or deleted) before exiting your program.

Calling Seguence:

CALL DELETE (unit [,error])

where:

unit is a one word integer variable or constant which describes the
unit number to delete (must be non-zero).

error is an optional one word integer variable which will contain the
error status of the delete operation. The meaning of the error status
is the same as with the OPEN subroutine.

For example, the statement:

CALL DELETE (2)

will delete file number 2.

7.3.4 CALL FILES

The CALL FILES subroutine allows you to change the number of disk files
which can be opened for access by your program. When you execute your
program, the menu routine sets the number of disk files which you can
access to 3. This statement allows you to change the number from 1 to
9.

SECTION 7 - FORTRAN L i b r a r y Page 0 7 - 1 4

CALL FILES(5)

will allow your FORTRAN program to open up to 5 disk files
simultaneously.

This subroutine should not be used if your program has disk files
currently open. If this situation occurs, the resulting condition of
the open disk files is unpredictable.

This subroutine should only be used when using the TI-99 GPL
implementation of the FORTRAN compiler. If you call this subroutine
from a program running under MDOS, an execution error message (BF) will
result.

7.3.5 CALL BREAD/BWRITE (MDOS Only)

The BREAD and BWRITE subroutines are only available when using the MDOS
implementation of the FORTRAN compiler. The subroutines provide low
level sector access to disk files and disk volumes. The subroutines
call the equivalent BREAD and BWRITE I/O Functions to allow the user to
read and write individual disk sectors of a file, regardless of the
file type.

Note that the user must be aware of how the TI-99/4A and MDOS manage
disk files to use this function.

Calling Sequence:

CALL BREAD (file, sector, nosectors, buffer, error)
CALL BWRITE (file, sector, nosectors, buffer, error)

where:

file is an array which contains the name of the file to read
or write (e.g. DSK1.TEST, A:TEST, TEST, A:, DSK1., etc.).

sector is a one-word integer variable which contains the
sector offset within the file to access, from 0 to n-1, where
n is the number of sectors used by the file.

no_sectors is a one-word integer variable which contains the
number of sectors to read or write. If this variable is
zero, then the file header is returned.

buffer is an array which contains the data to write, or will
contain the data read. It should be at least 18 bytes long
to read or write the file header, or at least no_sectore *
256 bytes long for sector access.

For example, the following will return the file header information into
the array "filehdr":

integer *1 filehdr(lB), filename(lO)
data filename / lOhTESTFILE /
call bread (filename, 0, 0, filehdr, error)

SECTION 7 - FORTRAN Library Page 07-15

7.4 Graphics Interface

These subroutines allow access to graphics, including reading and
writing to the screen, defining your own character shapes, setting the
screen width (32 column, 40 column, or 80 column), changing the color
of the screen and characters, reading character patterns, and clearing
the screen.

7.4.1 CALL GCHAR

The GCHAR subroutine reads a character from anywhere on the screen.

Calling Sequence:

CALL GCHAR (row, column, character [,f color, bcolor])

where:

row is a one word integer constant or variable which defines
the row number to read. It ranges from 1 (top of screen) to
24 (bottom of screen)

column is a one word integer constant or variable which
defins the column number to read. It ranges from 1 (left of
screen) to 32 (right of screen)

character is a one word integer variable which will contain
the ASCII character number at the location specified. It
ranges from 1 to 255.

f_color is an optional one word integer variable which is
only valid using the MOOS implementation of the subroutine.
It returns the foreground color of the character.

b_color is an optional one word integer variable which is
only valid using the MDOS implementation of the subroutine.
It returns the background color of the character.

For example, assuming the character "0" is at row I, column 20, the
statement:

CALL GCHAR (1, 20, ICHAR)

will return the value *30'X in ICHAR.

7.4.2 CALL HCHAR

The HCHAR routine displays a character anywhere on the screen and
optionally repeats it horizontally.

Calling Sequence:

CALL HCHAR (row, column, character (,repetitions])

SECTION 7 - FORTRAN Library Page 07-16

where:

row is a one word integer variable or constant which contains
the starting row number, from 1 (top) to 24 (bottom).

column is a one word integer variable or constant which
contains the starting column number from 1 (left) to 32
(right), or 40, or 80 depending on the screen mode.

character is a one word integer variable or constant which
contains the ASCII character number to display, from 1 to
255.

repetitions is an optional one word integer variable or
constant which describes the number of times to repeat the
character horizontally across the screen. If this parameter
is not specified, the character is only drawn once.

For example, the statement:

CALL HCHAR (4, 10, '0030'X, 10)

will draw ten ASCII zero's across the screen starting at row 4, column
10.

7.4.3 CALL VCHAR

The VCHAR routine displays a character anywhere on the screen and
optionally repeats it vertically.

Calling Sequence:

CALL VCHAR (row, column, character [,repetitions])

where:

row is a one word integer variable or constant which contains
the starting row number, from 1 (top) to 24 (bottom).

column is a one word integer variable or constant which
contains the starting column number from 1 (left) to 32
(right), or 40, or 80 depending on screen mode.

character is a one word integer variable or constant which
contains the ASCII character number to display, from 1 to
255.

repetitions is an optional one word integer variable or
constant which describes the number of times to repeat the
character vertically down the screen. If this parameter is
not specified, the character is only drawn once.

For example, the statement:

CALL VCHAR (4, 10, '0030'X, 10)

SECTION 7 - FORTRAN Library Page 07-17

will draw ten ASCII zero's down the screen starting at row 4, column
10.

7.4.4 CALL SCREEN

The SCREEN subroutine allows you to change the background color of the
screen (normally set to the color specified in the Preferences Utility
under TI-99 GPL mode, or the default MDOS screen color in MDOS mode).

Calling Sequence:

CALL SCREEN (background color [.foreground color])

where:

background color is a one word integer variable describing
the background color of the screen.

foreground color is an optional one word integer variable
describing the foreground color of the characters on the
screen.

The color definitions are:

1 - Transparent 9 - Medium Red
2 - Black 10 - Light Red
3 - Medium Green 11 - Dark Yellow
4 - Light Green 12 - Light Yellow
5 - Dark Blue 13 - Dark Green
6 - Light Blue 14 - Magenta
7 - Dark Red 15 - Gray
8 - Cyan 16 - White

For example, the statement:

CALL SCREEN (7, 2)

will change the screen color to dark red and the characters to black.

7.4.5 CALL COLOR

The CALL COLOR subroutine allows you to change the foreground
/background color attributes of a character set.

Calling Sequence:

CALL COLOR (character set, foreground color, background
color)

where:

character set is a one word integer variable defining the
character set number to modify, as follows:

SECTION 7 -

1
2
3
4
5
6
7
8
9
10

FORTRAN Library

-

-
-
-
-
-
-
-
-
-

32
40
48
56
64
72
80
88
96
104

to
to
to
to
to
to
to
to
to
to

39
47
55
63
71
79
87
95
103
111

11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -
20 -

112 to
120 to
128 to
136 to
144 to
152 to
160 to
168 to
176 to
184 to

119
127
135
143
151
159
167
175
183
191

21 -
22 -
23 -
24 -
25 -
26 -
27 -
28 -

- 192
- 200
- 208
- 216
- 224
- 232
- 240
- 248

Page 07-18

to 199
to 107
to 215
to 223
to 231
to 239
to 247
to 255

For example, the statement:

CALL COLOR (3, 10, 1)

would define the characters 48 to 55 (hex '30'x to '37'x), which are
the characters 0,1,2,3,4,5,6 and 7 as foreground color of light red
(10), and background color of transparent (1).

This subroutine is NOT available under MDOS, due to MOOS restrictions

7.4.6 CALL CHAR

The CHAR subroutine allows you to define your own character shapes by
passing an eight byte pattern identifier.

Calling Sequence:

CALL CHAR (character code, pattern identifier)

where:

character code is a one word integer variable or constant
which contains the ASCII character number to modify, from 0
to 255.

pattern identifier is an eight byte integer array or double
precision constant which defines the pattern.

For example, the statement:

CALL CHAR (48, '1898FF3D3C3CE404'X)

will place the pattern identifier as character number 48 ('30'x, or
ASCII zero). The character can then be written to the screen using the
HCHAR, VCHAR, or a standard FORTRAN WRITE statement (e.g. C48).

Note that the standard character set (characters '20'X to '7F'X) are
loaded only when FORTRAN is initially booted. Therefore, the standard
character set should not be modified by your program.

7.4.7 CALL CHARPA

The CHARPA routine allows you to retrieve the character pattern of the

SECTION 7 - FORTRAN Library Page 07-19

specified character.

Calling Sequence:

CALL CHARPA (character code, pattern identifier)

where:

character code has the same meaning as with CALL CHAR, and

pattern identifier is an eight byte integer array or double
precision variable which will contain the pattern identifier.

For example, the statement:

CALL CHARPA (48, DCHAR)

would return a value of 1898FF3D3C3CE404 in the double precision
variable DCHAR if executed after the example in CALL CHAR.

7.4.8 CALL CLEAR

The CLEAR subroutine clears the screen, and homes the cursor.

Calling Sequence:

CALL CLEAR

There are no arguments. This statement provides the same function as
writing a top of form ('1') using a WRITE statement.

7.4.9 CALL SET32

The SET32 subroutine sets the screen width to 32 column mode. In this
mode the screen is 32 columns wide by 24 rows long. You can use
sprites. This is the default mode of a FORTRAN program.

Calling Sequence:

CALL SET32

There are no parameters. When the command is executed, the screen is
cleared, and the column width is set to 32 columns.

When this statement is executed when using the MDOS implemenation, it
puts your program into "TI-99 compatibility mode" with graphics mode 1.
The normal MDOS interface to graphics mode 1 does not operate the same
as the TI-99 (e.g. there is no equivalent of CALL COLOR within MDOS).
If you wish to code a program which uses graphics mode 1 (32 column
graphics mode), and is compatible with 99 FORTRAN using the TI-99, then
use a CALL SET32 statement. If you wish to use the MDOS implementation
of graphics mode 1, you can issue a CALL SETM0D(3) statement.

7.4.10 CALL SET40

SECTION 7 - FORTRAN Library Page 07-20

The SET40 subroutine sets the screen width to 40 column mode. In this
mode the screen is 40 columns wide by 24 rows long. You cannot use
sprites or the COLOR subroutine.

Calling Sequence:

CALL SET40

There are no parameters. When the command is executed, the screen is
cleared, and the column width is set to 40 columns.

7.4.11 CALL SET80

The SET80 subroutine can be called using the MDOS implementation of the
FORTRAN compiler, and also may be called in the TI-99 GPL
implementation if used with a MYARC GENEVE running under GPL. It sets
the screen width to 80 column mode. In this mode, the screen is 80
columns wide by 24 rows long. You cannot use sprites or the COLOR
subroutine while in this mode.

Calling Sequence:

CALL SET80

There are no parameters. When the command is executed, the screen is
cleared, and the column width is set to 80 columns.

7.4.12 CALL PRINTC

The PRINTC subroutine allows you to enable (flag=.TRUE.) or disable
(flag=.FALSE) the checking done by the screen output routine on
control/S or control/Q.

Normally, after any screen output completion, the screen routine within
the execution support package checks the keyboard to see if the user
has depressed control/S (XOFF). If he has, then all output is halted
waiting for the user to press control/Q (XON). However, this slows
screen output, and is not useful for certain types of application
programs (e.g. interactive games and menu driven utilities).

This subroutine allows you to enable and disable this checking.

Calling Sequence:

CALL PRINTC (flag)

where:

flag is a one-word logical variable which defines whether
control/S checking is enabled (.TRUE.) or not (.FALSE.).

Note that FORTRAN programs are always started with control/S, control/Q
checking enabled. Also, disabling control/S processing will only
remain in effect as long as the current program is executing, i.e. new

SECTION 7 - FORTRAN Library Page 07-21

programs start out with the default of control/S checking.

For example:

CALL PRINTC (.FALSE.)

will disable control/S checking.

7.4.13 CALL CMDSTR (MDOS Only)

The CMDSTR subroutine is available under MDOS only. It returns the
command line string specified when the task name was used on the MDOS
command line.

If an error is detected (e.g. the command is too long for the user
array) an error number is returned as -1.

Calling Seguence:

CALL CMDSTR (array, ierror)

where:

array is an integer *1 array of which the first byte is the
length-1 of the array, and the remaining bytes will contain
the command line string upon return.

ierror is an integer *2 variable which will be set to zero if
the command was returned into the array, it will be set to -1
if the command line exceeded the length of the array.

Upon return from the subroutine, the first byte of the array will
contain the number of bytes actually retrieved. The second through n
bytes will contain the actual command string.

For example, the following returns the command string:

integer *1 command(81)
command(l) = z'50' I length of array (SObytes)
call cmdstr (command, ierror)
if (ierror .ne. 0) then
write (6, 9100) ierror

else
n = command(1)+1
write (6, 9110) (command(i),i=2,n)

end if
9100 format (• Error returned, error is ',i6)
9110 format (' The command array is ',80al)

end

SECTION 7 - FORTRAN L i b r a r y Page 0 7 - 2 2

7 . 5 S p r i t e s

FORTRAN allows access to the sprite interface of your computer. The
subroutines provided allow you to define sprites, set them in motion,
delete sprites, determine the position of sprites, and control the
sprite magnification factor.

7.5.1 CALL SPRITE

The SPRITE subroutine creates sprites. Sprites are graphic characters
which have a color, a shape, a location on the screen, and optionally a
velocity. Sprites move smoothly across the screen since their motion
is controlled by an interrupt routine in your computer.

Calling Sequence:

CALL SPRITE (sprite number, character value, sprite color,
dot row, dot column [,row velocity, column velocity])

where:

sprite number is a one word integer variable or constant
which contains the sprite number, from 1 to 32. If the value
is the same as one that has already been defined, the old
sprite is replaced by the new.

character value is a one word integer variable or constant
which contains the character number associated with the
sprite. This number can range from 128 to 255. Note that
this number is not the same as used with the CHAR subroutine.
Use the SPCHAR subroutine to define sprite shapes.

sprite color is a one word integer variable or constant which
can vary from 1 to 16. It defines the same colors as in the
SCREEN subroutine.

dot row and dot column are one word integer variables or
constants which specify the starting row, column of the
sprite. Dot row can vary from 1 to 192 (top to bottom) and
dot column can vary from 1 to 255 (left to right). The
position of the sprite is the upper left hand corner of the
sprite.

row velocity and column velocity are optional one word
integer variables or constants which define the velocity of
the sprite. If row velocity and column velocity are both
zero, than the sprite is stationary. A positive row velocity
moves the sprite down and a negative row velocity moves it
up. A positive column velocity moves the sprite to the
right, while a negative column velocity moves it to the left.
If both row velocity and column velocity are non zero, the
sprite moves at an angle in a direction determined by the
values. Row and column velocity may vary between -128 and
127. A value close to zero is very slow. A value far from
zero is very fast. When a sprite comes to the edge of the
screen, it disappears and reappears on the opposite side of

SECTION 7 - FORTRAN Library Page 07-23

where:

sprite number is a one word integer variable or constant
which contains the sprite number, from 1 to 32. The sprite
must have already been defined using the CALL SPRITE
subroutine.

the screen.

For example, the statements:

CALL SPCHAR (96, 'FFFFFFFFFFFFFFFF'X)
CALL SPRITE (1, 96, 5, 92, 1, 24)

defines sprite number 1 to be associated with sprite character 96, with
a color of 5 (dark blue), a dot row and column address of 1, 24. The
sprite defined is stationary as the row, column velocity is not
specified.

7.5.2 CALL SPCHAR

The SPCHAR subroutine allows you to define your own sprite character
shapes by passing an eight byte pattern identifier.

Calling Seguence:

CALL SPCHAR (character code, pattern identifier)

where:

character code is a one word integer variable or constant
which contains the sprite character number to modify, from
128 to 255.

pattern identifier is an eight byte integer array or double
precision constant which defines the pattern.

For example, the statement:

CALL SPCHAR (128, •1898FF3D3C3CE404*X)

will place the pattern identifier as sprite character number 128, or
hex '80'X. The sprite can then be displayed using the CALL SPRITE
subroutine.

7.5.3 CALL MOTION

The MOTION subroutine allows you to set a previously defined sprite in
motion, by defining the row, column velocity.

Calling Sequence:

CALL MOTION (sprite number, row velocity, column velocity)

SECTION 7 - FORTRAN Library Page 07-24

row velocity and column velocity are optional one word
integer variables or constants which define the velocity of
the sprite. If row velocity and column velocity are both
zeroes, then the sprite is stationary. These mean the same
as with the SPRITE subroutine.

For example, the statement:

CALL MOTION (1, -20, 10)

will set sprite number 1 in motion, using the row and column velocity
of -20 (going up) and 10 (going right).

7.5.4 CALL POSITI

The POSITI subroutine is used to return the current position of the
referenced sprite.

Calling Sequence:

CALL POSITI (sprite number, dot row, dot column)

where:

sprite number is a one word integer variable or constant
which contains the sprite number, from 1 to 32. The sprite
must have already been defined using the CALL SPRITE
subroutine.

row velocity and column velocity are optional one word
integer variables which will contain the position of the
sprite.

For example, the statement:

CALL POSITI (1, IDOTR, IDOTC)

will return the current dot row and dot column of sprite number 1 in
the variables IDOTR, IDOTC.

7.5.5 CALL DELSPR

The DELSPR subroutine is used to delete the definition for the
referenced sprite.

Calling sequence:

CALL DELSPR (sprite number)

where:

sprite number is a one word integer variable or constant
which contains the sprite number, from 1 to 32. The sprite
must have already been defined using the CALL SPRITE

"5ECTI0N 7 - FORTRAN Library Page 07-25

subroutine.

For example:

CALL DELSPR (1)

will delete the definition for sprite number 1. The sprite will
disappear from the screen.

7.5.6 CALL MAGNIF

The MAGNIF subroutine is used to control the magnification factor of
the sprites.

Calling Sequence:

CALL MAGNIF (magnification factor)

where:

magnification factor is a one word integer value or constant
which defines the current magnification factor for the
sprites. It can vary from 1 to 4. If no CALL MAGNIF
statement is in your program, the default value used is 1.

Magnification factor 1 causes all sprites to be single size
and unmagnified.

Magnification factor 2 causes all sprites to be single size
and magnified.

Magnification factor 3 causes all sprites to be double size
and unmagnified.

Magnification factor 4 causes all sprites to be double size
and magnified.

For example, the statement:

CALL MAGNIF (4)

would set all sprites to be double sized and magnified.

SECTION 7 - FORTRAN Library Page 07-26

7.6 Sound Routines

The CALL SOUND subroutine interfaces with the sound generator in your
TI-99 GPL or MYARC GENEVE computer.

Calling Sequence:

CALL SOUND (duration, frequencyl, volumel [,...,frequency 4,
volume 4])

where:

duration is a one word integer variable or constant which
contains the duration of the sound or noise in thousandths of
a second. It ranges from 1 to 4250 (to cause a wait until
the previous sound is completed) or -1 to -4250 (to terminate
the previous sound and start the new sound)

frequency is a one word integer variable or constant which
contains the frequency of the note being played from 110 to
32767 hz. Alternately, frequency contains the noise
specification, as follows:

-1 Periodic Noise type 1
-2 Periodic Noise type 2
-3 Periodic Noise type 3
-4 Periodic Noise that varies with the frequency of the
third tone specified

-5 White Noise type 1
-6 White Noise type 2
-7 White Noise type 3
-8 White Noise that varies with the frequency of the third
tone specified.

volumel to volume4 are one word integer variables or
constants which specify the loudness of the note or noise.
Zero is the loudest and 30 is the softest. Arguments 2
through 4 are optional.

For example, the statement:

CALL SOUND (1000, 110, 0)

plays A below low C loudly for one second.

7.6.1 CALL SOUSTA

The SOUSTA subroutine returns the status of the sound generator,
whether it is currently playing or not. It returns the status into a
single logical variable.

Calling Sequence:

CALL SOUSTA (flag)

SECTION 7 - FORTRAN Library Page 07-27

where:

flag is a logical variable which will be Bet .TRUE. if a
sound or noise is currently being played, and will be set
.FALSE. otherwise.

For example:

logical *2 flagl, flag2
call sound (1000, 440, 2)
call sousta (flagl)
call delay (20)
call sousta (flag2)

will return .TRUE, in the variable flagl, and .FALSE. in the variable
flag2.

SECTION 7 - FORTRAN Library Page 07-28

7.7 Keyboard and Joystick Subroutines

The following subroutines allow access to the keyboard and the
joystick.

7.7.1 CALL KEY

The KEY subroutine provides the interface to the keyboard.

Calling Sequence:

CALL KEY (unit, character, status)

where:

unit is a one word integer variable or constant which
specifies the key unit number as follows:

0 - Read entire keyboard
1 - Read left side of keyboard
2 - Read right side of keyboard
3 - See BASIC user manual
4 - See BASIC user manual
5 - See BASIC user manual
7 - Break Key Check (MDOS Only)
8 - Raw Scan Code (MDOS Only)

character is a one word integer variable or constant which
will contain the depressed key upon return from the
subroutine. The ASCII character returned varies from 1 to
127.

status is a one word integer variable which will contain the
status upon return from the KEY subroutine. Status is set as
follows:

0 No key depressed

1 Key depressed, ASCII value in character

For example, the statement:

CALL KEY (0, KEYC, ISTATUS)
will read the entire keyboard, and return a value between 1 and 128 in
KEYC if a key was depressed.

Functions 7 (break check) and 8 (raw scan code) are available in the
MDOS implementation of the compiler only. Mode 7 returns status =1 and
a key code of 255 if the break key is currently pressed. Mode 8
returns a raw scan code of the keyboard in the returned KEYC variable.
If there is no keyboard code in the keyboard buffer, then a keycode of
255 is returned.

SECTION 7 - FORTRAN Library Page 07-29

7.7.2 CALL JOYST

The JOYST subroutine reads the current position of the joystick.

Calling Sequence:

CALL JOYST (key unit, x-return, y-return)

where:

key unit is a one word integer variable or constant which
specifies the joystick to read, as follows:

1 - Joystick number 1
2 - Joystick number 2

x-return, y-return are one word integer variables which
return the x-y position of the joystick, as follows:

The first value in the parenthesis is returned as x-return, and the
second as y-return.

For example, the statement:

CALL JOYST (1,IX, IY)

will read the current position of joystick number 1, and return the x
position in variable IX, and the y in variable IY.

SECTION 7 - FORTRAN Library Page 07-30

7.8 Memory Access Subprograms

The following subprograms allow access to memory areas outside the
normal address space of your FORTRAN variables. The PEEK function
subprogram has already been described in the intrinsic function summary
(see section 7.2)

7.8.1 CALL VMBR/CALL VMBW

The VMBR routine allows reading multiple bytes from VDP RAM into a
local variable or array. The VMBW routine reverses this and writes the
local variable or array into VDP RAM.

Calling Sequence:

CALL VMBR (VDP location, variable, number bytes)
CALL VMBW (VDP location, variable, number bytes)

where:

VDP location is a one word integer variable or constant which
specifies the VDP RAM location to start access from,

variable is an integer variable or array where the read
information will be put, and

byte count is the number of bytes to read (VMBR) or write
(VMBW) to/from VDP RAM.

For example, the statements:

INTEGER IARRAY(484)
CALL VMBR (0, IARRAY, '300'X)

will read the entire screen image into array IARRAY.

7.8.2 CALL LVMBR/CALL LVMBW (MDOS Only)

The LVMBR and LVMBW VDP access subroutines are only available when
using MDOS. They access the extended (up to 128kbytes) of VDP memory
available on the MYARC GENEVE. They are similar to the VMBR/VMBW
subroutines, except that the VDP location to access is an integer *4
variable, and may range from z'00000' to z'lffff.

Calling Sequence:

CALL LVMBR (VDP location, variable, number bytes)
CALL LVMBW (VDP location, variable, number bytes)

where:

VDP location is an integer *4 variable or constant which
specifies the VDP RAM location to start access from, from
z'00000" to z'lffff inclusive,

SECTION 7 - FORTRAN Library Page 07-31

variable is an integer variable or array where the read
information will be written, and

number bytes is the number of bytes to read (LVMBR) or write
(LVMBW) to VDP RAM.

For example, the statements:

integer *1 array(100)
integer *2 nobytes
integer *4 vdploc
vdploc = z'10040'
nobytes = 100
call lvmbr (vdploc, array, nobytes)

will read 100 decimal bytes starting at VDP location z'10040' into the
array "array".

7.8.3 CALL LOADM

The LOADM subroutine is used to put up to ten values into sequential
CPU RAM locations.

Calling Sequence:

CALL LOADM (location, valuel [, ...,valuel0])

where:

location is the CPU RAM memory address to write to, and

valuel, ,...,valuel0 are 1 to 10 values (one word integer
variables) in which to write to the memory location.

Note that full words (not bytes) are written.

For example, the statement:

CALL LOADM ('834A'X, '00^6'X, '1280'X)

will load memory locations '834A'X and '834C'X with the values '0025'X
and '1280'X.

7.8.4 CALL VWTR/CALL VRFR

The VWTR and VRFR subroutines provide access to the 9918 (TI-99 GPL
mode) or 9938 (MDOS GENEVE) Video Chip Registers. The VWTR subroutine
writes a byte value to a single register, where as the VRFR subroutine
reads a byte value from a video register.

Since both the 9918 and 9938 Video registers are WRITE-ONLY, the value
read back using the VRFR functions are actually the saved values at the
last time the VWTR function was called. If you chose to bypass the
VWTR function and write to the video registers within your own assembly

SECTION 7 - FORTRAN Library Page 07-32

language subroutine, then FORTRAN cannot retrieve the current register
values.

Calling Sequence:

CALL VWTR (register!, value)
CALL VRFR (register!, value)

where:

register! is a one word integer variable which contains the
register number to read or write. For the TI-99 GPL mode, it
must be from 0 to 7, inclusive. For the MDOS mode it must be
the register number from 0 to 46, inclusive.

value is a one word integer variable which contains the value
to write to the specified register, or the value read from
the register. The value is right justified, is eight bits
wide in the sixteen bit field.

For example, the following statement will set video register 2 to a
>01:

CALL VWTR (2, 1)

The value written to video register 2 can later be retrieved via the
statement:

CALL VRFR (2, IVALUE)

7.8.5 CALL GVIDTB

The GVIDTB subroutine returns the addresses in Video RAM of the
following tables:

Color Table
Pattern Table
Screen Image Table
Sprite Attribute Table
Sprite Pattern Table
Sprite Color Table

Calling Sequence:

CALL GVIDTB (array)

where:

array is a two-word integer array of six elements which will
contain the integer *4 addresses of the color table, the
pattern table, the screen image table, the sprite attribute
table, the sprite pattern table, and the sprite color table.

For example, the following will return the starting video RAM addresses
of the specified six tables in the array "vaddr":

SECTION 7 - FORTRAN Library Page 07-33

integer *4 vaddr(6)
call gvidtb (vaddr)

7.8.6 CALL CPMBR/CALL CPMBW (MDOS Only)

The CPMBR and CPMBW subroutines provide access to the extended memory
of the MYARC GENEVE when running under MDOS only. To use the
subroutine, you must first allocate additional memory using the CALL
MALLOC subroutine.

The CPMBR subroutine reads data at the given logical cpu memory
location into the local variable or array. The CPMBW routine writes
data from the local array or variable starting at the given CPU
location.

Note that since the cpu location is an integer *4 varaible, addresses
above the 64kbyte memory limit of a user task may be addressed.

If you use this subroutine in conjunction with the symbolic debugger,
you must only access memory locations from z'40000' and above.

Calling Seguences:

CALL CPMBR (cpulocation, variable, numberbytes)
CALL CPMBW (cpu_location, variable, numberbytes)

where:

cpulocation is an integer *4 variable which is the memory
location to access, from z'00000' to z'fffff. MDOS
currently supports 24 bit addressing on local pages. Note
that this is NOT the physical memory address, it is the
logical memory address based on which pages you have mapped
with the CALL MALLOC subroutine.

variable is a variable or array which must be at least
numberbytes in length, and is the data to write, or where
the data will be placed on a read,

numberbytes is an integer *2 variable or constant which
specifies the number of bytes to read or write.

For example:

integer *I array(100)
integer *2 nobytes
integer *4 cpuloc
cpuloc = z'11400*
nobytes = 100
call malloc (8, 1, 0, error, noapages, nofpages)
call cpmbr (cpuloc, array, nobytes)

will read 100 bytes of data into the local array "array", from local
memory address z'11400'.

SECTION 7 - FORTRAN L i b r a r y Page 07-34

Note the subroutine call is preceeded by a call to the MALLOC memory
allocation subroutine. This call allocates a single memory page
located at logical memory addresses z'10000' to z'llfff which is
accessable using the CALL CPMBR and CALL CPMBW subroutines.

SECTION 7 - FORTRAN Library Page 07-35

7.9 Miscellaneous Routines

The following subroutines provide useful miscellaneous functions.

7.9.1 CALL QUIT

The QUIT subroutine forces an exit back to the master title screen
(when using TI-99 GPL mode) or the MDOS command prompt (when using MDOS
mode). All files are closed before exit.

Calling Sequence:

CALL QUIT

There are no arguments.

7.9.2 CALL WAIT

The WAIT subroutine displays the message:

Press ENTER to Continue

on the screen. When the enter button is depressed, the subroutine
returns to the calling program.

Calling Sequence:

CALL WAIT

There are no arguments.

7.9.3 IRAND Function

IRAND returns a random number.

Calling Sequence:

value = IRAND (top value)

where:

value is a one word integer variable which will contain the
random number.

top value is a one word integer variable or constant which
specifies the range of the random number. The range will be:

0 .LE. value .LT. top value

For example, the statement:

IVALUE = IRAND (100)

will return a random number between 0 and 99 to the value IVALUE.

SECTION 7 - FORTRAN Library Page 07-36

Note that the name IRAND must be declared type INTEGER in your program,
either implicitly or explicitly.

7.9.4 IVAL/VAL/DVAL Functions

IVAL/VAL/DVAL return an integer, single precision real, or double
precision number based on a passed ASCII string of digits, decimal
point, and sign character (+ or -) .

Calling Sequence:

integer variable =#IVAL (string)
real variable ="VAL (string)
double precision variable = DVAL (string)

where:

integer variable is an integer variable which will contain
the integer result of the value string, and

real variable is a single precision real variable which will
contain the single precision RADIX 100 value of the string,
and

double precision variable is a double precision variable
which will contain the double precision RADIX 100 value of
the string, and

string is an array containing the string to be passed. It
must be terminated with a non-number, non-decimal point, or
non-sign character.

For example, the statements:

DOUBLE PRECISION DVALUE, DVAL
INTEGER STRING(5)
DATA STRING / '12\ '34', '.5', '67', '8' /
DVALUE = DVAL (STRING)

Upon execution of the DVAL function, the variable DVALUE will contain
the floating point number 1234.5678. Note that the character is used
to terminate the string. Note also, since the IVAL/VAL/DVAL routines
are not INTRINSIC functions, their type must be declared properly.

7.9.5 CALL EXIT

The EXIT subroutine performs the same function as the STOP statement,
except that an immediate return is performed to the main menu routine,
with no STOP message or WAIT message on the screen.

Calling Sequence:

CALL EXIT

SECTION 7 - FORTRAN Library Page 07-37

where:
file name - is an array which contains the disk file name of
program to be called. Its length must be less than 40
characters, and it must be terminated by a blank.

error is a one word integer variable which is set if an

There are no arguments.

7.9.6 CALL DELAY

The DELAY subroutine provides specific time delays in your program.
Delays are specified in tenths of a second.

Under TI-99 GPL mode, the MENU routine maintains a double word real
time clock in memory locations • 2028'X and '202A'X. This clock is
incremented every sixth VDP interrupt, which is every l/10th of a
second. Note that interrupts are inhibited during Input/ Output, so
that the clock will lose time during disk I/O operations.

Delay clears the second word of the clock (location '202A'X), and waits
for the value in that cell to be incremented to the requested value
(tenths of a second). When it ha6, control is returned to the calling
program.

Under MDOS mode, no real-time clock is maintained since MDOS does not
allow for user interrupt routines. Instead, the real-time clock last
digit is examined in a polling loop, and when it increments by the
desired amount, control is returned to the user. In this mode, time
will not be lost during disk I/O operations.

Calling Sequence:

CALL DELAY (Time)

where:

Time is a one word integer variable, which specifies the
amount of time to delay, in tenths of a second.

For example, the statement:

CALL DELAY (15)

would cause the program to delay 1.5 seconds (15 tenths of a second).

7.9.7 CALL CHAIN

The CHAIN subroutine allows you to call one FORTRAN program from
another.

Calling Sequence:

CALL CHAIN (file name, error)

SECTION 7 - FORTRAN Library Page 07-38

error condition was detected during the operation. It is set
to -1 if the the file name was too long, or it is set to the
I/O error code if an I/O error was detected during the load,
or the MDOS error code when using the MOOS implementation.

In the TI-99 GPL implementation, not all errors cause a return to the
calling program, some will cause a return to the MENU.

In the MDOS implementation, the called program need not be a FORTRAN
program, it can be a C99 or assembly program. Also, in MDOS the CHAIN
subroutine always returns to the calling program. The called program
multi-tasks with the calling program (unless the called program sets
the multi-task lock via the CALL LOCK subroutine).

Refer to the appendix for tips on data passing between programs. Note
also that all files are closed between program calls. You cannot leave
a file open and expect to use it in the called routine.

7.9.8 CALL LOCK

The LOCK subroutine allows you to disable or reenable multi-tasking in
the MDOS implementation only. Refer to the MDOS programming
documentation concerning the concept of multi-tasking.

Calling Sequence:

CALL LOCK (flag)

where:

flag is a one-word logical *2 variable which is set to .TRUE,
to disable multi-tasking, and is set to .FALSE, to reenable
multi-tasking.

This subroutine is especially useful for a child task (a program which
has been called via the CHAIN subroutine). By setting the lock via
CALL LOCK (.TRUE.), the child task will complete before control is
returned to the calling task (or until the child task does a CALL LOCK
(.FALSE.)). Otherwise, the called routine and the calling routine will
multi-task (share program execution).

SECTION 7 - FORTRAN Library Page 07-39

7.10 Extended GraphicB Library

All of the following subroutines apply to the the 9640 GENEVE computer,
running under MDOS. Some of the following subroutines (e.g. SETMOD,
GETMOD) may be used in the Tl-99 GPL implementation.

The functions are available by linking to the
library on the FORTRAN distribution disk.

'GL' (Graphics Library)

7.10.1 CALL SETMOD

Sets the current video mode according to the mode variable, from 0 to 9
MDOS mode), or 0 to 3 (TI-99 GPL mode), as follows:

1

0
1
2
3
4
5
6
7
8
9

description

Text 1 Mode
Text 2 Mode
Multi-Color
Graphics 1
Graphics 2
Graphics 3
Graphics 4
Graphics 5
Graphics 6
Graphics 7

Cols

40
80
--
32
32
--
40
80
80
40

Rows

24
26
--
24
24
--
26
26
26
26

Calling Sequence:

CALL SETMOD (mode)

where:

mode is a one-word integer
graphics mode, from 0 to 9.

For example, the statement:

variable that specifies the

CALL SETMOD (2)

Sets the current graphics mode to 80 column text mode 2, the default
mode of MDOS (and the same as using the CALL SET80 statement).

Note that graphics mode 1 invoked by CALL SETMOD(3) is not the same as
the graphics mode used by the TI-99. If you wish true compatibility
with TI-BASIC graphics mode 1, then you should use a CALL SET32
statement to invoke this mode, not a CALL SETMOD(3). 9640 FORTRAN
provides a special compatibility mode with a CALL SET32 statement.

7.10.2 CALL GETMOD

GETMOD returns the current video mode, from 0
implementation) or 0 to 3 (TI-99 GPL implemenation).

to 9 (MDOS
Optionally, the

SECTION 7 - FORTRAN Library Page 07-40

number of columns and number of rows are returned also.

Calling Sequence:

CALL GETMOD (mode [,irow, icolumn)

where:

mode is a one-word integer variable that will contain the
graphics mode, from 0 to 9.

irow is an optional one-word integer variable that will
contain the number of rows on the screen, and

icolumn is an optional one-word integer variable that will
contain the number of columns on the screen.

For example, the statement:

CALL GETMOO (MODE)

would return a 3 in the MODE variable, if the screen mode had been set
to 3 via the SETMOO statement, or if the SET32 subroutine had been
called.

7.10.3 CALL SETPOS

The SETPOS subroutine sets the current row and column on the screen.

Calling Sequence:

CALL SETPOS (irow, icolumn)

where:

irow is a one-word integer variable specifying the row number
to position to, and

icolumn is a one-word integer variable specifying the column
number to position to.

The arguments irow and icolumn are specified from 0 to n, where n is
one minus the number of rows or columns which can be displayed in the
current video mode. For example, in mode 1 (text 2 mode), irow must be
in the range of 0 to 25, and icolumn must be in the range of 0 to 79.
An execution time error will result if the arguments are not in the
specified range.

For example, the statements:

call setpos (10, 10)
write (6, 9100)
9100 format ('+text string')

SECTION 7 - FORTRAN Library Page 07-41

would cause the cursor to be positioned to row 10, column 10, and the
text string 'text string' to be written there.

7.10.4 CALL GETPOS

The GETPOS subroutine returns the current row and column where the
cursor is positioned.

Calling Sequence:

CALL GETPOS (irow, icolumn)

where:

irow is a one-word integer variable which will contain the
row number positioned to, and

icolumn is a one-word integer variable which will contain the
column number positioned to.

For example, the statement:

CALL GETPOS (IROW, ICOLUMN)

would return 10 for IROW, and 10 for ICOLUMN, if issued directly after
the CALL SETPOS statement from above.

7.10.5 CALL SETVPG (MDOS Only)

The SETVPG subroutine causes the specified video page number to be
displayed on the screen.

Calling Sequence:

CALL SETVPG (ipage)

where:

ipage is a one-word integer variable specifying the video
page number to display, from 0 to n.

For example, the statement:

CALL SETVPG (0)

would set the current displayed video page to page 0.

7.10.6 CALL GETVPG (MDOS Only)

The GETVPG subroutine causes the current displayed video page number to
be returned in the specified variable.

Calling Sequence:

SECTION 7 - FORTRAN Library Page 07-42

CALL GETVPG (ipage)

where:

ipage is a one-word integer variable which will contain the
current displayed video page number, from 0 to n.

For example, the statement:

CALL GETVPG (IPAGE)

would return 0 in the variable IPAGE, unless the video page has been
changed via the SETVPG subroutine.

7.10.7 CALL SCRLUP, CALL SCRLDN, CALL SCRLLE, CALL SCRLRI (MDOS Only)

The window scroll functions provide scrolling in any of four directions
(up, down, left, or right), given the coordinates of the window to
scroll, the number of lines to scroll, the character to blank lines
with, and the color to blank lines with.

Calling Sequences:

CALL SCRLUP (nolines, rowul, colul, rowlr,
col_lr, character, foreground, background)

CALL SCRLDN (nolines, rowul, colul, rowlr,
collr, character, foreground, background)

CALL SCRLRI (nolines, rowul, colul, rowlr,
collr, character, foreground, background)

CALL SCRLLE (nolines, rowul, colul, rowlr,
collr, character, foreground, background)

where:

nolines is a one-word integer variable which is the number of
lines to scroll,

row_ul is a one-word integer variable which is the row number
of the upper left corner,

colul i6 a one-word integer variable which is the column
number of the upper left corner,

rowlr is a one-word integer variable which is the row number
of the lower right corner,

collr is a one-word integer variable which is the column
number of the lower right corner,

character is a one-word integer variable containing the
character code number to written for blank lines,

SECTION 7 - FORTRAN Library Page 07-43

fore_cl is the foreground color to use for writing the blank
character, and

back_cl is the background color to use for writing the blank
character.

The functions operate as follows:

CALL SCRLUP - Scroll window up
CALL SCRLDN - Scroll window down
CALL SCRLLE - Scroll window left
CALL SCRLRI - Scroll window right

For example, the statement:

CALL SCRLUP (5, 10, 10, 20, 20, Z'0030', 2, 3)

will scroll the window at upper left 10,10 and lower right 20,20 up
five lines. Lines left behind will be blanked with the character
z'0030' (ASCII 0), and colored foreground and background with colors
2,3.

7.10.8 CALL SETBRD (MDOS Only)

The SETBRD subroutine sets the border color to the value specified.

Calling Sequence:

CALL SETBRD (color)

where:

color is a one-word integer variable specifying the color to
render the border.

For example, the statement:

CALL SETBRD (3)

will set the border color to light green, when in 32-column mode.

7.10.9 CALL SETPAL (MDOS Only)

The SETPAL subroutine is used to set the pallette colors in the
graphics chip registers to the specified color combination.

Calling Sequence:

CALL SETPAL (register, red, blue, green)

where:

register is a one-word integer variable which contains the
pallette register number to modify from 0 to 15,

SECTION 7 - FORTRAN Library Page 07-44

red is a one-word integer variable which specifies the
intensity of the color red, from 0 to 7,

blue is a one-word integer variable which specifies the
intensity of the color blue, from 0 to 7, and

green is a one-word integer variable which specifies the
intensity of the color green, from 0 to 7.

For example, the statement:

CALL SETPAL (4, 7, 0, 0)

will turn the background color of the screen dark red in 80 column
mode.

7.10.10 CALL SETPIX (MDOS Only)

The SETPIX subroutine sets the pixel at the specified x and y
coordinates to the specified foreground color.

Calling Sequence:

CALL SETPIX (ixcord, iycord, ifore)

where:

ixcord is a one-word integer variable which specifies the
x-coordinate of the pixel, from 0 to 511,

iycord i6 a one-word integer variable which specifies the
y-coordinate of the pixel, from 0 to 1023,

ifore i6 a one-word integer variable which specifies the
foreground color number, from:

graphics mode 4,6 : 0 to 15
graphics mode 5 : 0 to 3
graphics mode 7 : 0 to 255

Notes:

1. This subroutine should only be called in graphics modes 4 to
7.

2. The color byte should be specified according to the grqphics
mode above.

3. In the interests of speed, the only error checks on the passed
data is the x coordinate value (0 to 511), the y coordinate value
(0 to 1023) and the color (0 to 255).

For example, the following statements would set a dark red pixel on the
screen in coordinates 100,120:

SECTION 7 - FORTRAN Library Page 07-45

where:

1st x is a one-word integer variable which contains the first
X pixel coordinate,

lsty is a one-word integer variable which contains the first
Y pixel coordinate,

2nd_x is a one-word integer variable which contains the
second X pixel coordinate,

2nd_y is a one-word integer variable which contains the
second Y pixel coordinate,

foreground is a one-word integer variable which contains the

call setmod (9) I graphics mode 7
call setpix (100, 120, z'OOeO')

7.9.11 CALL GETPIX (MDOS Only)

The GETPIX subroutine returns the foreground, and possibly background
colors of the specified pixel (background in graphics modes 2 and 3
only).

Calling Sequence:

CALL GETPIX (ixcord, iycord, ifore [,iback])

where:

ixcord is a one-word integer variable which specifies the
x-coordinate of the pixel,

iycord is a one-word integer variable which specifies the
y-coordinate of the pixel,

if ore is a one-word integer variable which will con- tain the
foreground color number, and

iback is an optional one-word integer variable which will
contain the background color number (only returned in video
modes 4 and 5, graphic modes 2 and 3).

7.10.12 CALL SETVEC (MDOS Only)

The SETVEC subroutine effectively draws lines on the screen, by
specifying two pixel coordinates, and a foreground and optional
background color to render the vector between the coordinates.

Calling Sequence:

CALL SETVEC (lstx, lsty, 2nd_x, 2nd_y,
foreground [,background])

SECTION 7 - FORTRAN Library Page 07-46

foreground color to render vector, and

background is an optional one-word integer variable which
contains the background color to render vector (only needed
for graphics modes 2 and 3)

For example, the statement:

CALL SETVEC (10,10,200,200,2)

will draw a green line diagonally on the screen say in screen mode 7
(see SETMOD subroutine).

7.10.13 CALL CLRSRC (MDOS Only)

The CLRSRC subroutine searches the pixels on the screen for the
specified color. Both LEFT and RIGHT searches are supported, starting
at a given pixel coordinate.

Calling Sequence:

CALL CLRSRC (x-cord, y-cord, color, direction,
xl_cord, ylcord)

where:

x-cord is a one-word integer variable which specifies the
source x pixel coordinate,

y-cord is a one-word integer variable which specifies the
source y pixel coordinate,

color is a one-word integer variable which specifies the
color to search for,

direction is a one-word integer variable, which is set to the
value -1 for a RIGHT search, and 0 for a LEFT search,

xlcord is a one-word integer variable which will contain the
found x-coordinate (-1 if not found), and

ylcord is a one-word integer varaible which will contain the
found y-coordinate (-1 if not found).

For example, the statement:

CALL CLRSRC (10, 10, 2, -1, NXCORD, NYCORD)

will search to the right of pixel coordinates 10,10 for color 2, and if
found will return the new pixel coordinates in the variables NXCORD and
NYCORD. If the color is not found, then the variables NXCORD and
NYCORD will be set equal to -1.

7.10.14 CALL HBLKMV, HBLKCP, LBLKMV, LBLKCP (MDOS Only)

SECTION 7 - FORTRAN Library Page 07-47

The CALL HBLKMV, HBLKCP, LBLKMV, LBLKCP perform moves on blocks of
pixel data on the screen. The moves are actually performed by the 9938
video chip, and so are very fast.

The CALL HBLKMV and HBLKCP subroutines perform a high speed move or
copy of the pixel data to the specified coordinates. These subroutines
destroy the pixel data where the data is being moved "to".

The CALL LBLKMV and LBLKCP subroutines also perform a high speed move
or copy of the specified pixel data to the specified cooridinates. In
this case, however, a logical operation of the "moved to" data is
performed with original pixel data on the screen according to the
"logic" argument.

The CALL HBLKMV and LBLKMV move subroutines also require a color
argument which specifies the color to blank the pixels from where the
data is being moved "from".

A block of area to be moved is specified by six arguments, in terms of
number of pixels, as follows:

Calling Sequence:

CALL HBLKMV (rowuls, coluls, rowuld, coluld,
norow, nocol)

CALL HBLKCP (rowuls, coluls, rowuld, coluld,
norow, nocol, color, logic)

CALL LBLKMV (rowuls, coluls, rowuld, coluld,
norow, nocol, logic)

CALL LBLKCP (rowuls, coluls, rowuld, coluld,
norow, nocol, color)

where:

row uls is a one-word integer variable which contains the row
number of the upper left corner of source, (same as

SECTION 7 - FORTRAN Library Page 07-48

y-coordinate)

coluls is a one-word integer variable which contains the
column number of the upper left corner of source, (same as
x-coordinate)

row_uld is a one-word integer variable which contains the row
number of the upper left corner of destination, (same as
y-coordinate)

coluld is a one-word integer variable which contains the
column number of the upper left corner of destination, (same
as x-coordinate)

norow is a one-word integer variable which contains the
number of rows,

nocol is a one-word integer variable which contains the
number of columns,

color is a one-word integer variable which contains the pixel
color for blank pixels, and

logic is a one-word integer variable which contains the logic
operation to be performed on the destination.

An example of using some of the subroutines is:

call setmod (9)
call clear

c build a block on the screen
do 1000 i=50,79

1000 call setvec (10, i, 39, i, 120)
c move the built block to coordinates 100,100

call delay (40)
call hblkmv (50, 10, 100, 100, 30, 30, 64)

c copy the built block to coordinates 70,70
call delay (40)
call hblkcp (50, 10, 70, 70, 30, 30)
end

This program sets the graphics mode to 9; clears the screen; builds an
orange block at coordinates 50,10; moves the orange block to
coordinates 100, 100 and turns the orange block green; and copies the
green block to coordinates 70,70.

7.10.15 CALL BLKSUP, BLKSDN, BLKSLE, BLKSRI (MDOS Only)

The block scroll functions provide scrolling of pixel based graphics in
any of four directions (up, down, left or right), given the pixel row
and columns, the number of pixels to scroll, and the pixel color for
blank pixels.

Calling Sequences:

SECTION 7 - FORTRAN Library Page 07-49

CALL BLKSUP (nopixels, rowul, colul, rowlr,
collr, pixelcolor)

CALL BLKSDN (nopixels, rowul, colul, rowlr,
collr, pixelcolor)

CALL BLKSLE (nopixels, rowul, colul, rowlr,
collr, pixelcolor)

CALL BLKSRI (nopixels, rowul, colul, rowlr,
col_lr, pixelcolor)

where:

nopixels is a one-word integer variable which is the number
of pixels to 6croll

rowul is a one-word integer variable which is the row number
of the upper left corner,

colul is a one-word integer variable which is the column
number of the upper left corner,

row_lr is a one-word integer variable which is the row number
of the lower right corner,

collr is a one-word integer variable which is the column
number of the lower right corner,

pixel_ is a one-word integer variable which is the color
pixel color for blank pixels

The functions operate as follows:

CALL BLKSUP - Scroll Block Up
CALL BLKSDN - Scroll Block Down
CALL BLKSLE - Scroll Block Left
CALL BLKSRI - Scroll Block Right

For example, the statement:

CALL BLKSUP (5, 10, 10, 20, 20, 2)

will scroll the window at upper left 10,10 and lower right 20,20 up
five lines. Pixels left behind will be blanked with the color 2.

7.10.16 CALL SETTWN (MDOS Only)

The SETTWN subroutine sets up a text window, at the specified four
points on the screen.

Calling sequence:

CALL SETTWN (top, left, bottom, right)

SECTION 7 - FORTRAN Library Page 07-50

where:

top is a one-word integer variable which specifies the top
row of the window,

left is a one-word integer variable which specifies the
leftmost column of the text window,

bottom is a one-word integer variable which specifies the
bottom row of the window, and

right is a one-word integer variable which specifies the
rightmost column of the window.

For example, the statement:

CALL SETTWN (5, 8, 20, 25)

would open a window between columns 8 and 25, and rows 5 and 20.

Subsequent writes using WRITE statements will be within this window.

7.10.17 CALL GETTWN (MDOS VIDEO OPCODE >26)

The GETTWN subroutine returns the current coordinates of the text
window, as specified by four points on the screen.

Calling sequence:

CALL GETTWN (top, left, bottom, right)

where:

top is a one-word integer variable which will contain the top
row of the window,

left is a one-word integer variable which will contain the
leftmost column of the text window,

bottom is a one-word integer variable which will contain the
bottom row of the window, and

right is a one-word integer variable which will contain the
rightmost column of the window.

For example, the statement:

CALL GETTWN (ITOP, ILEFT, IBOTTOM, IRIGHT)

would return the values 5, 8, 20, and 25 in the specified variables
ITOP, ILEFT, IBOTTOM, and IRIGHT if this statement followed the CALL
SETTWN statement in SETTWN example.

7.10.18 CALL RESCHA (MDOS Only)

SiiCTION 7 - FORTRAN Library Page 07-51

The RESCHA subroutines restores the character set definition (reloads
the character pixels), given a starting character number, an ending
character number, and an optional character set pattern array.

Calling Sequence:

CALL RESCHA (istart, iend [,charse])

where:

istart is a one-word integer variable specifying the starting
character number to restore, from 0 to 255,

iend is a one-word integer variable specifying the ending
character number to restore, from 0 to 255, and

charse is an optional array which contains the pattern
definitions for the specified characters.

7.10.19 CALL SETMSE (MDOS Only)

The SETMSE subroutine sets the x and y positions of the mouse, and also
the mouse speed in eight increments.

NOTE: This routine MUST be called before using CALL GETMSE or CALL
GETMSR, otherwise MDOS will hang and you will have to cold boot your
GENEVE to continue (as of MDOS 1.14).

Calling Sequence:

CALL SETMSE (x_pos, y_pos, scale)

where:

x_pos is a one-word integer variable which contains the new
desired x position for the mouse,

y_pos is a one-word integer variable which contains the new
desired y position for the mouse,

scale is a one-word integer variable which contains the scale
factor for the mouse speed, a number from 0 to 7, where 0 is
the fastest speed.

7.10.20 CALL GETMSE, CALL GETMSR (MDOS Only)

The GETMSE subroutine returns the x and y positions of the mouse, and
also returns three logical variables representing the button positions
of the left, middle, and right pushbuttons.

The GETMSR subroutine returns the relative x and y positions of the
mouse, since the last call to GETMSE or GETMSR.

NOTE: You MUST call SETMSE before calling GETMSE or GETMSR, otherwise

SECTION 7 - FORTRAN Library Page 07-52

MDOS will hang and you will need to cold boot your GENEVE to continue
(as of MDOS 1.14) .

Calling Sequence:

CALL GETMSE (x_pos, y_pos, left, middle, right)
CALL GETMSR (x_pos, y_pos, left, middle, right)

where:

x_pos is a one-word integer variable which will contain the
current x position for the mouse, or the displacement since
the last call to GETMSE or GETMSR,

y_pos is a one-word integer variable which will contain the
current y position for the mouse, or the displacement since
the last call to GETMSE or GETMSR,

left is a one-word logical variable which will be .TRUE, if
the leftmost button is pressed, .FALSE, otherwise,

middle is a one-word logical variable which will be .TRUE,
if the middle button is pressed, .FALSE, otherwise,

right is a one-word logical variable which will be .TRUE, if
the right button is pressed, .FALSE, otherwise.

SUCTION 7 - FORTRAN Library page 07-53

7.11 DATE/TIME Library (MDOS Only)

The DATE/TIME Library routines provide access to the real-time clock in
the GENEVE. Routines are provided to check the current time and date
for validity, to return the time and date to text strings, to set the
time and date from text strings, and to return the day of the week.

These subroutines call the utility XOP library within MDOS, and as such
are not available under GPL mode. Any attempt to call the following
routines within MDOS will result in an error 'MO' (MDOS only) to be
displayed.

All of these routines are included in the 'FL' non-math FORTRAN library
(for MDOS only).

7.11.1 CALL CHETIM/CHEDAT (MDOS Only)

The CHETIM routine checks the current time in the real-time clock for
validity, and returns a flag .TRUE, or .FALSE, depending on whether
the time and data is valid (.TRUE.) or invalid (.FALSE.).

The CHEDAT routine operates in the same manner, except the date is
checked instead of the time.

Calling Sequences:

CALL CHETIM (flag)
CALL CHEDAT (flag)

where:

flag is a logical *2 argument which is .FALSE. if the time
or date is incorrect, or .TRUE. if the time or date is
correct.

For example, the sequence:

logical *2 datflag
call chedat (datflag)

will return a .TRUE. in datflag if the date is currently valid, will
return a

7.11.2 CALL CONTTS/CONDTS (MDOS Only)

The CONTTS and CONDTS subroutines convert the time and date to strings,
suitable for display or printing.

Ca11i ng Sequences:

CALL CONTTS (string)
CALL CONDTS (6tring)

where:

SECTION 7 - FORTRAN Library Page 07-54

string is at least a ten byte integer array to hold the
current time, or at least an eight byte integer array to hold
the date.

For example:

integer *1 date(8)
call condts (date)

would return an eight byte string representing the date in the array
"date". If today was Nov. 27, 1988, then the string would contain:
11-27-88.

7.11.3 CALL CONSTT/CONSTD (MDOS Only)

The CONSTT/CONSTD subroutines convert a given string representing
either the time or date into the system time, and changes the system
time to match. Error checking is performed on the passed string, and a
flag is returned to indicate whether the string was accepted.

Calling Sequences:

CALL CONSTT (string, flag)
CALL CONSTD (string, flag)

where:

string is an array which contains the text string re
presenting the time (at least 10 bytes) or the date (at least
8 bytes),

flag is a logical *2 variable which is set .TRUE, if the new
date or time was accepted by the system, .FALSE, if it was
not.

For example:

logical *2 flag
integer *2 date(4)
data date / 8hll-27-88 /
call constd (date, flag)
if (flag) write (6, 9100)

9100 format (' date was accepted')

would set the date to November 27, 1988; and display the statement
'date was accepted' on the CRT.

7.11.4 CALL CONJUL (MDOS Only)

The CONJUL subroutine is passed the month, the day, and the year as
three integer *2 values. It returns the two word "internal" format
date as an integer *4 value.

Calling Sequence:

SECTION 7 - FORTRAN Library Page 07-55

where:

nun is an integer *2 variable which is the current month (from
1 to 12),

dd is an integer *2 variable which is the current day (from 1
to 31),

yyyy is a n integer *2 variable which is the current year
(from 1988 to 32,767), and

packeddate is an integer *4 variable which i6 the converted
'internal' date in real time clock format

For example:

integer *4 packdate
call conjul (11, 27, 1988, packdate)

would return the current date in the integer *4 variable packdate.

7.11.5 CALL RETDOW (MDOS Only)

The RETDOW subroutine returns the current day of week, from 1 (Sunday)
to 7 (Saturday).

Calling Sequence:

CALL RETDOW (day)

where:

day is an integer *2 variable which is the returned day of
week, from 1 to 7.

For example:

integer *2 day
call retdow (day)

will return a value from 1 to 7 in the variable "day".

CALL CONJUL (mm, dd, yyyy, packeddate)

SECTION 7 - FORTRAN L i b r a r y Page 07-56

7.12 MEMORY MANAGER LIBRARY (MDOS ONLY)

The MEMORY MANAGEMENT subroutines interface to the MDOS Memory Manager
Library (XOP SEVEN). Library routines which deal with obtaining more
memory, returning the status of memory, and returning memory to the
system are provided.

Note that a FORTRAN task uses all or part of the first 64k of a local
task memory space. If the FORTRAN symbolic debugger is invoked, all or
part of the second 64k task memory space is also used. Loading a
symbol file and/or source files using the symbolic debugger will cause
all or part of the third 64k memory space to be used.

address 00000 to Offff
10000 to lffff
20000 to 2ffff

FORTRAN task
Symbolic Debugger
Symbol file and Source files

It is not necessary for the average FORTRAN user to interface to these
subroutines, FORTRAN allocates the necessary memory needed for the task
at startup. Advanced users may wish to allocate more memory for
applications.

Memory in the GENEVE is segregated into PAGES. Each page is 8192 bytes
(>2000 hexadecimal bytes). Since the processor used in the GENEVE has
a 16 bit (64k) address space, the actual pages which make up the
current 64k address is specified in an eight byte memory mapper
register space (located at >fll0). A task cannot directly use more
than 64k of memory.

The MDOS executive allocates memory to a user task as requested by the
task, and maintains a local memory page list. The first eight bytes of
this list usually match what is in the mapper registers, and are
addressed from >0000 to >ffff (local pages 0 to 7). Additional 8k
pages of memory can be allocated using the memory management
subroutines, and swapped with local execution pages.

The eight pages which comprise the first 64k of memory are referred
as execution pages.

to

7.12.1 CALL RTFREE (MDOS Only)

The RTFREE routine returns the number of free pages left in the system
memory, including the number of system and fast pages.

Calling Sequence:

CALL RTFREE (error, nofree, noffree, nosfree)

where:

error is a one word integer variable which will contain any
error code returned (0=no error),

nofree is a one word integer variable which will contain the

SECTION 7 - FORTRAN Library Page 07-57

where:

spage is a one word integer variable which is the starting
page number to fetch, from 0 to n,

nopages is a one word integer variable which is the number of
pages to fetch, from 1 to n,

speed is a one word integer variable set to non-zero if fast
memory is desired,

error is a one word integer variable which will contain any
error returned (0 means no error),

noapages is a one word integer variable which is the number
of pages actually fetched, and

nofpages is a one word integer variable which is the number
of fast pages actually fetched.

number of free pages in the system,

noffree is a one word integer variable which will contain the
number of fast free pages in the system, and

nosfree is a one word integer variable which will contain the
total number of system memory pages (used and free).

For example:

call rtfree (ierror, nofree, noffree, nosfree)

might return the following:

ierror = 0, nofree=31, noffree=3, nosfree=68

indicating no error, free pages left of decimal 31 (253,952 bytes), the
number of free fast pages of decimal 3 (24,576 bytes), and the total
number of system pages (in use and available) of decimal 68 (557,056
bytes).

7.12.2 CALL MALLOC (MDOS Only)

The MALLOC subroutine allocates memory to the local page list. The
user passes the starting page number (0 to n), the number of pages to
get (0 to n), whether fast or slow memory is desired. The library
attempts to get the desired memory, and returns an error code if
unsuccessful. Also, the number of pages actually fetched and the
number of fast pages actually fetched are returned.

Calling Sequence:

CALL MALLOC (spage, nopages, speed, error,
noapages, nofpages)

SECTION 7 - FORTRAN Library Page 07-58

For example, the following code will fetch 6 pages of memory, from
>10000 to >lffff, into the local page map:

call ma Hoc (8, 6, 0, ierror, nopagee, nofpages)

7.12.3 CALL RTPAGE (MDOS Only)

The RTPAGE subroutine performs the reverse of MALLOC, it returns the
desired number of pages to the system map. Pages returned will no
longer be available for the user task.

Calling Sequence:

CALL RTPAGE (nopages, pageno, error)

where:

nopages is a one word integer variable which is the number of
pages to return to the system,

pageno is a one word integer variable which is the starting
page number to return, from 0 to n,

error is a one word integer variable which is any error code
returned.

For example:

call rtpage (4, 8, error)

will return four pages of memory, starting at page number 8 (address
>10000) to the system map. If no error is encountered, the variable
error will contain zero upon return.

7.12.4 CALL MPLCPE (MDOS Only)

The MPLCPE subroutine maps a local page, which may extend past the 64k
FORTRAN task execution space, to an execution page, which is in the 64k
FORTRAN task execution space.

This subroutine must be used with extreme caution, since it is possible
to map the memory page you are currently executing in to anothor memory
page.

Calling Sequence:

CALL MPLCPE (locpage, exepage, error)

where:

locpage is a one word integer variable which is the local
page number to map, from 0 to n,

exepage is a one word integer variable which is the execution

btCTION 7 - FORTRAN Library Page 07-59

where:

array is an integer *1 array which will contain the local
memory map,

arrayeize is a one word integer variable which is the size of
the array, in bytes, and

error is a one word integer variable which is any error code
returned.

For example:

integer *1 memmap(8)
call rtmapr (memmap, 8, error)

would return the local execution memory map in the array memmap.

page number to map to, from 0 to 7, and

error is a one word integer variable which is the error code
returned, if any.

For example:

call mplcpe (8, 4, error)

would map local page number 8 to execution page 4. Any error code
would be returned in the variable error.

7.12.5 CALL RTMAPR (MDOS Only)

The RTMAPR routine returns the local page map in the user array. Thi6
map would contain the page numbers for each 8192 byte map in the local
map.

Calling Sequence:

CALL RTMAPR (array, arraysize, error)

ofiCTION 8 - Programming Example Page 08-1

would have the value of 8.9 at row 1, column 2. The name "SECOND" is
located at row 2, column 1.

This matrix is termed a "data" model.

Associated with a spreadsheet is a "logic" model. A logic model
specifies the operations to be performed on the "data" model. For
example, to add together rows 1 and 2, above, to produce a total row 3,
the logic model:

3 = 1 + 2

would be specified, and would produce:

8.0 Introduction

Programming examples for 99 FORTRAN and 9640 FORTRAN are included on
the first library disk. These examples are intended to show the usage
of various aspects of the FORTRAN system. They are not all
encompassing.

For 99 and 9640 FORTRAN, a simple menu-driven spreadsheet program i6
supplied on the first library disk (99 FORTRAN) or the
library/demonstration disk (9640 FORTRAN). This program allows you to
create and modify matrices of values, which then can be calculated upon
using your defined equations.

For 9640 FORTRAN (MDOS implementation), the following additional
example programs are included on the library disk:

DRIVERS : Sine Wave Display Plotter
FRACTALS : Fractalish Terrain Generator
FILEZAPS : FileZap Sector Editor

8.1 99/9640 FORTRAN Programming Example

The CALC program on the library disk is an example of a simple
spreadsheet program. It demonstrates many features of 99/9640 FORTRAN,
including floating point arithmetic, how to construct and use menus,
sprite capability, call key usage, include file usage, and many others.

Before diving into the demonstration program, let's discuss the basics
of a matrix and a spreadsheet program.

A matrix consists of values seperated into rows and columns. Columns
go from left to right (and are numbered 1 to 15), while rows go from
top to bottom. For example, the matrix:

1

FIRST

SECOND

2

1.2

66.6

3

8.9

200.0

4

222.6

800.0

SBCTIUN a - programming Example Page 08-2

in row 3.

Logic models also specify the names associated with each row (in
column 1, as above), the overall spreadsheet name, and four special
values (total row and column, last row and column).

So, defining a spreadsheet consists of specifying the logic model, the
data model, and performing the calculation function. Functions are
also provided to:

1. Edit the data model
2. Edit the logic model
3. List the logic model to the screen
4. Print the logic & data models to a printer
5. Re-initialize the entire spreadsheet
6. Save the logic model, data model, or both to a disk file
7. Load an old logic model, data model, or both from a disk file
8. Calculate the logic model

8.1.1 Compiling the Program

Before the program can be used, it must be compiled and linked. Format
a new, blank, disk using the DISK MANAGER module and copy the following
three files from the first library disk to the new formatted program
disk:

DSK.FORTLIBR.CALC
DS K.FORTLIBR.CALC1
DSK.FORTLIBR.COMMON

Boot FORTRAN using the procedure outlined in Section 1. Follow one of
the procedures depending on whether you are using the 99 (TI-99 GPL)
FORTRAN implementation or the 9640 (MDOS) implementation:

TI-99 GPL Implementation

Select the "compile" (option 2) on the FORTRAN main menu.

Insert the program diBk you have copied the three files onto in disk
drive 1, and answer the following questions on the FORTRAN compile mode
menu:

Input File Name?
DSK1.CALC

Object File Name?
DSK1-CALCOBJ

FIRST

SECOND

TOTAL

1.2

66.6

67.8

8.9

200.0

208.9

222.6

800.0

1022.6

SECTION 8 - Programming Example Page 08-3

Listing File Name?
CRT

Scratch Disk Number?
1

Compilation Options?

Press ENTER to Continue

The compilation will begin. After the compilation completes, perform
the same steps, except use an input file name of DSK1.CALC1 and an
object file name of DSK1.CALCOBJ1.

MDOS Implementation

Put the FORTRAN BOOT disk in drive 2, the program disk in drive 1.
Type the following command at the MDOS prompt:

B:F9640 /ODSK5.CALCOBJ A:CALC
B:F9640 /ODSK5.CALCOBJ1 A:CALC1

The programs should compile normally with no errors.

8.1.2 Linking the Program

After the program has been compiled, producing two object files
(CALCOBJ and CALCOBJ1), it must be linked along with the library
routines to produce an executable image. Follow one of the procedures
based on your implementation:

TI-99 GPL Implementation

For the TI-99 GPL implementation, insert the BOOT disk into one of the
disk drives, and select item 3 OR the FORTRAN main menu.

Insert the program object disk in drive 1, and answer the following
questions on the Linker Menu:

Executable File Name?
DSK1.CALCEXE

Listing File Name?
CRT

Object File Name?
DSK1.CALCOBJ

The first object file will be loaded, and the next object file will be
requested. Enter:

SECTION 8 - Programming Example Page 08-4

Object File Name?
DSK1.CALCOBJ1

The second object file will be loaded and the next object file will be
requested. Just press enter, and the following message will be
displayed:

Unresolved References
Scan Library Name:

Insert the second FORTRAN library disk into disk drive 0SK1., and enter
the following on the screen:

DSK1.ML

Insert the first FORTRAN library disk into disk drive DSK1., and enter
the following on the screen:

DSK1.FL

The FORTRAN libraries will be scanned, and all necessary routines will
be loaded into main memory.

A link map will be displayed on the screen, along with the messages:

Saving File DSK1.CALCEXE
Saving File DSK1.CALCEXF
Press ENTER to Continue

Press ENTER to return to the FORTRAN main menu.

MDOS Implementation

Insert the first FORTRAN boot disk into disk drive A:, the library/
demonstration disk into disk drive B:, and type in the following at the
MDOS command prompt:

A:FLINK /OE:CALCOBJ,E:CALCOBJl /IB:ML,A:FL,A:GL E:CALCEXE

The linker should link the program with no errors, and create two
executable modules, CALCEXE and CALCEXF.

8.1.3 Loading the Program

When using the TI-99 GPL implementation, the spreadsheet program may be
loaded using item 7 on the FORTRAN main menu. It may also be run using
item 5 on the Editor/Assembler menu page "RUN PROGRAM FILE". In either
case, the program is run by entering the file name:

DSK1.CALCEXE

When loaded via the Editor/Assembler item 5 (RUN PROGRAM FILE), the
program is automatically executed. When loaded on the FORTRAN menu
using item 7, then the program is initiated by pressing item 4, RUN.

SECTION 8 - Programming Example Page 08-5

When the program starts, the main CALC spreadsheet menu is dispalyed.

When using the MDOS implementation, the program can be started simply
by typing:

DSK5.CALCEXE

at the MDOS command prompt.

8.1.4 Spreadsheet Main Menu

The spreadsheet main menu is a selection list of items to perform. The
following options are displayed:

99 Spreadsheet
DEFAULT

Press:

1 To Edit Values
2 Edit Logic Model
3 List
4 Print
5 Reinitialize
6 Save
7 Load
8 Calculate

On this menu, pressing the numbers 1 to 8 will cause the next submenu
to be displayed. Pressing fctn/back at this point will stop the
program, and return you to the FORTRAN menu or to the Editor/Assembler
menu.

8.1.5 Edit Values

The first item on the list allows you to edit the data model associated
with the spreadsheet. When item 1 is selected on the main menu, the
following submenu is displayed:

99 Spreadsheet
<spreadsheet name>

Edit Values
Press:

1 To Modify Values
2 Clear Row
3 Clear Column
4 Copy Row
5 Copy Column

To return to the spreadsheet main menu, depress fctn/back from this
menu.

Item 1 - Modify Values

SECTION 8 - Programming Example Page 08-6

This item allows you to modify data values associated with the
spreadsheet. To make an entry in a field, move the cursor to the
desired field using the fctn/s, fctn/d, fctn/x, and fctn/e keys
(left, right, down, and up arrows), and enter the new value.

Note that column 1 is for alphanumeric data, and identifies the
meaning for each row. All other columns are for data values.

Leaving a current value, by using the arrow keys, fctn/back, or enter
key, causes the entered value to be automatically saved in the
spreadsheet at that location.

To go back to the edit values submenu, press fctn/back.

Item 2 - Clear Row

This item allows you to clear (set to zero or blanks) an entire row.

Item 3 - Clear Column

This item allows you to clear (set to zero or blanks) and entire
column.

Item 4 - Copy Row

This item allows you to copy one row to another.

Item 5 - Copy Column

This item allows you to copy one column to another.

8.1.6 Edit Logic Model

Item 2 on the main menu allows you to modify the logic model. When 2
is selected on the main menu, the following submenu is displayed:

99 Spreadsheet
spreadsheet name>
Edit Logic Model

Press:

1
2
3

4

5

6

Modify Equations
Spreadsheet Name
Total Column Number

(Now = XX)
Total Row Number

(Now = xx)
Last Column Number

(Now = xx)
Last Row Number

(Now = xx)

Item 1 allows you to modify the row equations. For example, to add

SKCTION 8 - Programming Example Page 08-7

together rows 1 and 2 and leave the result in row 3, you would specify:

Row to modify:
3

Equation for 3:
1+2

The operators +, -, *, and / are available. Note that the calculations
are performed from row 1 to row 40, and the hierarchy of operations is
left to right in the equations.

Item 2 allows you to modify the spreadsheet name. When item 2 is
selected, the prompt:

New Name:

is displayed. Enter the new eight character name for the spreadsheet.

Item 3 allows you to modify the total column number. Its initial
default value is 15 (the last column). When 3 is selected, the prompt:

New Column:

is displayed. Enter a new column number from 2 to 15. Entering a zero
for the column number will disable the total column.

Item 4 allows you to modify the total row number. Its initial default
is 40 (the last row). When 4 is selected, the prompt:

New Row:

is displayed. Enter a new row number from 0 to 40. A zero will
disable the total row calculation.

Item 5 allows you to modify the last column number. This is the last
column which will be printed using the "print" option on the main menu.
Its default is 15 (the last column). Enter a number between 1 and 15.

Item 6 allows you to modify the last row number. This i6 the last row
which will be printed using the "print" option on the main menu. Its
default is 40 (the last row).

8.1.7 List

Item 3 on the main menu causes the logic model to be listed on the
screen. The listing consists of the following information:

* Spreadsheet Name
* Total Column and Row
* Last Column and Row
* Row Names

SECTION 8 - Programming Example Page 08-8

* Row Eguations

8.1.8 Print

Item 4 on the main menu allows you to print the logic or data model (or
both) to any standard 99 printer. When item 4 is selected, the
following submenu is displayed:

99 Spreadsheet
spreadsheet name>

Print Mode

Press:

1 To Print Logic
2 Data
3 Both

Enter 1, 2, or 3, depending on whether the logic model, data model, or
both are to be printed. When the print option has been selected, the
prompt:

Device Name?

will be displayed. Enter an up to 32 character device name. The
following are valid 99 device names (assuming that the proper interface
is connected):

RS232/1.BA=4800
PIO

8.1.9 Re-initialize

Item 5 on the main menu allows you to re-initialize the entire
spreadsheet (logic and data models). When this option is selected, the
message:

Are you sure (Y/N)

is displayed. If you really want to clear the spreadsheet in memory,
press a shift/Y. Any other character will return you to the main menu.

8.1.10 Save/Load

Items 6 and 7 on the main menu allow you to save the spreadsheet to a
disk file, and later restore it. When item 6 is selected, the submenu:

99 Spreadsheet
<spreadsheet name>

Save Mode (or Load Mode)

Press:

1 To Save Logic (or To Load Logic)

oECTION 8 - Programming Example Page 08-9

2 Data
3 Both

is displayed. Press items 1, 2, or 3. After the save/load option is
selected, the prompt:

Disk Number (1-3):

is displayed. Enter a 1, 2, or 3, depending on which disk drive you
want the spreadsheet to be saved to or loaded from.

The spreadsheet program generates file names based on your current
spreadsheet name. For example, if you defined the name of your
spreadsheet to be:

89TAXES

then the logic model would be saved to disk file:

89TAXES/L

and the data model would be saved to disk file:

89TAXES/D

8.1.11 Calculate

Item 8 on the main menu specifies that the calculations according to
the row equations, and the total row/columns be performed. When item 8
is selected the screen:

99 Spreadsheet
<spreadsheet name>
Calculate Mode

Calculating Row:

xx

is displayed, and is updated when each row equation is calculated.
When the calculation is complete, then the program will return to the
main menu.

SECTION 8 - Programming Example Page 08-10

8.2 9640 FORTRAN Demonstration Programs

The MDOS implementation includes additional FORTRAN demonstration
programs of good utility on the library/demonstration disk.

8.2.1 DRIVERS : Sine Wave Display Plotter

The DRIVERS program is a simple plotting program. The original
implementation was authored by Elmer Clausen, and was placed into
public xiomain with permission. The MDOS implementation has been
modified to use graphics mode 7, and the SETPIX routine to plot a sine
wave to the screen.

Before the program can be executed, it must be compiled. The following
is a suggested procedure for compilation:

1. Make sure you set up a RAM disk in your autoexec file:

RAMDISK 100

2. Insert the BOOT disk in drive A, insert the library disk in
drive B.

3. Type in the following commands:

A:
F9640 /ODSK5.DRIOBJ B:DRIVERS
FLINK /ODSK5.DRIOBJ /IFL,GL,B:ML DSK5.DRIEXE

4. To execute the program, type:

DSK5.DRIEXE

8.2.2 FRACTALS - Fractalish Terrain Generator

The FRACTALS program is an example of using 9640 FORTRAN to generate
FRACTAL scenery. It extensively uses INTEGER *1 data and the SETPIX
routine to generate interesting "scenes" which look very much like
terrain as seen at a high altitude.

Before you can use the FRACTALS program, it must be compiled and
linked. The following is a suggested procedure to compile and link the
FRACTALS program:

1. Make sure you set up a RAM disk in your AUTOEXEC file:

RAMDISK 100

2. Put your BOOT disk in drive A..

3. Type in the following commands:

A:
F9640 /0DSK5.FRA0BJ B:FRACTALS

SECTION 8 - Programming Example Page 08-11

FLINK /ODSK5.FRAOBJ /IFL,GL DSK5.FRAEXE

4. To execute the program, type:

DSK5.FRAEXE

8.2.3 FileZap - Sector Editor Utility Program

The FILEZAP program is a sector editor utility. It operates in
80-column mode, and allows you to inspect or alter any sector within a
file or disk volume, in hexadecimal and/or ascii mode.

The program is a good example of the binary read/write subroutine, the
mouse interface routines, the use of INCLUDES on file names, the PRINTC
function, and the command string return function.

To use the program, it must first be compiled. The following is a
suggested procedure for compiling the FILEZAPS program:

1. Make sure you set up a RAM disk in your autoexec file:

RAMOISK 100

2. Insert the BOOT disk in drive A, insert the library disk
in drive B.

3. Type in the following commands:

B:
A:F9640 /ODSK5.FZO FILEZAPS

AtFLINK /ODSK5.FZO /IA:FL,A:GL DSK5.FILEZAPS

4. To execute the program, type:

DSK5.FILEZAP <name of file to inspect>

For example, to look at the file FILEZAPS on drive B:, you might type:

DSK5.FILEZAP B:FILEZAPS

To look at the entire volume (disk) in the B: drive, you might type:

DSK5.FILEZAP B:

UiAPTER 9 - UTILITIES Page 0 9 - 1

9.0 UTILITIES (TI-99 GPL Only)

The UTILITIES program (item 9 on the 99 FORTRAN Menu) allows you to
tailor the 99 FORTRAN system for your individual tastes, by allowing
you to modify various preferences in the 99 FORTRAN package.

When item 9 is selected on the FORTRAN Main MENU, then two files are
loaded, and the following menu is displayed:

99 Utilities v4.2

Press:

1. To Modify Preferences
2. Exit

Press the number key associated with the function you wish to perform.
Function 1 requires that the BOOT disk be inserted into the appropriate
disk drive before selection.

9.1 Modify Preferences

Item 1 on the Utilities MENU allows you to modify various parameters in
the 99 FORTRAN package to suit your configuration or individual tastes.
When this item is selected, the screen will clear, and the message:

Loading MENU image DSK.FORTCOMP.FORT0A

will be displayed. Once the MENU image has been successfully loaded,
the screen will again clear, and the preferences will be displayed:

Preferences

Number of Lines/Page.... 56
32, 40, or 80 columns... 32
Background Color BLUE
Foreground Color .•. WHITE
Character for Cursor.... 5F
Default # files to open. 3
Terminating Printer Char 0A
Default Label for Printer 9
Wild Card Label Binding. 6
Disk Names: DS RD WD
BOOT Disk Name: DSK.FORTCOMP.
Library Disk Name: DSK.FORTLIBR.
Printer:

and the cursor will be positioned next to the number of Lines/Page
column. To change a setting, merely enter the new number. To leave
the setting alone, then just press enter to skip to the next entry.

CHAPTER 9 - UTILITIES Page 0 9 - 2

9 . 1 . 1 Number o f L i n e s / P a g e

This parameter tells the Compiler and the EDITOR how many lines are per
printer page. The default is 56, which is normal for 6 lines/inch, 11
inch paper.

9.1.2 32 or 40 or 80 Column Default

This parameter defines whether the default screen width is 32 column or
40 column or 80 columns. Note you should only select 80 columns if you
are using a MYARC GENEVE computer capable of 80 column operation. The
default is 32.

9.1.3 Background/Foreground Colors

These parameters define the background (screen) color and the
foreground (character) color. The default is white (foreground) on
blue (background). When this item is selected, a message is displayed
on the bottom of the screen:

Hit ENTER to move to next
l=c/background, 2=c/foreground

Depress the number "1" key to change to the next background color.
Depress the number "2" key to change to the next foreground color. The
screen and character colors will change with each key depression. When
you are satisfied with the screen and character colors, depress the
ENTER key.

9.1.4 Character for Cursor

This parameter defines the hexadecimal ASCII code for the cursor
character. The default is '5F'X, or the underscore.

9.1.5 Default Label for Printer

When your FORTRAN program is started, the PRINTER device as specified
by the PRINTER name is opened for write access. It is bound to this
label. The default number for this label is 9.

9.1.6 Wild Card Label Binding

If you use the wild card (asterick - *) form for FORTRAN Reads and
Writes, this parameter defines the actual FORTRAN device number to be
used. It is defaulted to 6 (for the CRT), but can be changed to match
the Printer Label (9) or any other device number.

9.1.7 Default Files to Open

When your program is started, the MENU routine informs the disk DSR

APTER 9 - UTILITIES Page 09-3

routine how many disk files your program is allowed to open. This
parameter is used by the linker to insert into the loader information
block for your program. Changing this parameter will have no effect on
programs that have already been linked.

9.1.8 Disk Names

The OUTPUT subsystem determines whether to interpret the first
character of the output operation is a carraige control character or
not. It does this by comparing the first two letters of the device
name (e.g. DS for a disk device, 0SK1, etc.) with the entries in this
table. If you have some exotic device which you do not want the first
character to be truncated in files written from FORTRAN, then add the
name to this list.

9.1.9 BOOT Disk Name

The BOOT Disk Name defines the name which is prepended to the file name
when an item is selected from the FORTRAN main MENU. The default is:

DSK.FORTCOMP.

You if keep the BOOT disk in one particular disk drive all of the time,
it would be worthwhile changing the name to that disk drive, e.g.:

DSK2.

if you keep the BOOT disk in DSK2. Do not change the actual name of
the BOOT disk from FORTCOMP. The BOOT routine and the UTIL1 routine
expect to use this name.

Be sure to end the name with a period I

9.1.10 Library Disk Name

The Library Disk Name is the name prepended to each file when the
linker is scanning the library disk. The default name is:

DSK.FORTLIBR.

You can change this name to any valid disk specification. One
application of this would be to combine the BOOT disk and the LIBRARY
disks to a single disk (if you have high-density drives), e.g.:

DSK.FORTCOMP

9.1.11 Printer

When your FORTRAN program is started, a PRINTER device is opened for
WRITE access. The name of the printer device opened is specified here.
The default is blank (no printer). Some typical printer names to put
here would be:

PIO

CHAPTER 9 - UTILITIES Page 09-4

RS232/1.BA=4800

If you want to remove the printer definition once it has been
specified, type a space, and then ENTER.

9.1.12 Saving Modifications

When you have completed the list of parameters, then the message:

Shall I save modifications (Y/N)?

will be displayed. If you answer with the capital letter Y, then the
FORTOA routine will be saved to disk, along with the modifications you
have selected.

9.1.13 Using Modifications

The following message will be displayed:

Shall I use modifications (Y/N)?

If you wish to use the preferences you have selected immediately, then
answer with a capital letter Y.

i.-PENDICES Page OA-1

A.l Disk Contents

A.1.1 TI-99 GPL Implementation

In the TI-99 GPL Implementation of 99 FORTRAN is supplied with three
single sided, single density diskettes, formatted in normal TI-99/4A
format. The three disks contain the following files:

Boot Disk

BOOT
FORTOA
FORT1A
FORT2A
F0RT2B
F0RT2C
FORT3A
FORT4A
F0RT5A
F0RT6A
F0RT6B
F0RT9A
FORT:A
LOAD
VERSION

Boot Program (E/A 5 Loader Subroutine)
Menu Load Module
Editor Load Module
Compiler Load Module, part 1
Compiler Load Module, part 2
Compiler Load Module, part 3
Linker Load Module
Execution Support Load Module
Symbolic Debugger Load Module
Librarian, Part 1
Librarian, Part 2
Utilities Load Module, part 1
Non-symbolic Debugger Load Module
BASIC Program to call BOOT
Text File (VAR/80) containing version information

Library Disk Number 1

CALC - Example Program Source, Part 1
CALC1 - Example Program Source, Part 2
COMMON - Example Program Common Source
FL - FORTRAN Library
GL - FORTRAN Graphics Library
VERSION - Text File (VAR/80) containing version information

Library Disk Number 2

ML - FORTRAN Math Library
VERSION - Text File (VAR/80) containing version information

APPENDICES Page OA-2

A.1.2 MDOS Implementation

The 9640 FORTRAN MDOS implementation is supplied with two double sided,
single density diskettes, which contain the following files:

Boot Disk
F9640
F9641
FDEB
FDEC
FDED
FDEE
FL
GL
FLINK
FQDE
SD
VERSION

Compiler, Part A
Compiler, Part B
Symbolic Debugger, Part A
Symbolic Debugger, Part B
Symbolic Debugger, Part C
Symbolic Debugger, Part D
Non-Math Library
Graphics Library
Linker
QD Editor with FORTRAN Tab
Show Directory Subtask for

Stops
FQDE

Text File (VAR/80) containing VERSION information

Library/Demonstration Disk

CALCOM - Calculation Program Common Source
CALC - Calculation Program Source, Part 1
CALC1 - Calculation Program Source, Part 2
DRIVERS - Sample DRIVER Program Source
FILECOM - Sample FILEZAP Program Commons Source
FILEZAPS- Sample FILEZAP Program Source
FLIB - FORTRAN Librarian, Part 1
FLIC - FORTRAN Librarian, Part 2
FRACTALS- Sample FRACTAL Program Source
ML - Math Library
VERSION - Text File (VAR/80) containing VERSION information

APPENDICES Page OA-3

A.2 Character Codes

Hex Decimal Character

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

!
H

$
%
&
*
(
)
*
+
i

-
.
/
0
1
2
3
4
5
6
7
8
9
:
i
<
=
>
?
e
A
B
C
D
E
F
G
H
I
J
K
L
M
O
P

(space)
(exclamation point)
(quote)
(number sign)
(dollar sign)
(percent)
(ampersand)
(apostrophe)
(left parenthesis)
(right parenthesis)
(asterick)
(plus sign)
(comma)
(minus sign)
(period)
(slash)

(colon)
(semi-colon)
(less than sign)
(equal sign)
(greater than sign)
(question mark)
(at sign)

Hex Decimal Character

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

P
Q
R
S
T
U
V
W
X
Y
Z
[

]

a
b
c
d
e
f
g
h
i
J
k
1
m
n
o
P
q
r
s
t
u
V
w
X

y
z
[

1
]
~

(open bracket)
(reverse slant)
(close bracket)
(up sign)
(line)
(grave)

(left brace)
(vertical line)
(right brace)
(tilde)
(del)

Character codes '80'X to 'FF'X (128 to 254) and •l'X to 'lF'X (1 to 31)
are usable by your program in the CALL CHAR subroutine.

APPENDICES Page 0A-4

A.3 RADIX 100 Notation

Floating point values (single or double precision) are represented
internally in the TI-99 computer using RADIX 100 notation. The only
difference between single and double precision notation i6 that single
precison is four bytes (two words) in length, while double precision is
eight bytes (four words) in length. In RADIX 100 notation, a number is
between 1.000000000000 to 99.999999999999 multiplied by 100 raised to a
power from -64 to 64. The first byte in the number indicates the
exponent of the value. If the exponent is positive, the byte value is
64 more than the exponent. If the exponent is negative, the byte value
is obtained by subtracting the exponent from 64. For example, if the
exponent is 3, the byte is 67 or >43. If the exponent is -2, the byte
is 62 or >3E. If the number is negative, the first word (the exponent
byte and first byte of the value) is in two's complement form.

The remaining seven bytes (three for single precision) indicate the
value of the number. To find the value of these bytes, the number in
decimal form but with the decimal point missing, is converted to
hexadecimal notation.

Examples:

Decimal Value

7

70

2,345,600

23,456,000

0

-7

-70

-2,345,600

Radix 100 Notation
0

7 x 100
0

70 x 100
3

2.3456 x 100
3

23.456 x 100
0

0 x 100
0

-7 x 100
0

-70 x 100
3

-2.3456 x 100

Byte Value

40 07 00 00 00 00 00 00

40 46 00 00 00 00 00 00

43 02 22 38 00 00 00 00

43 17 2D 3C 00 00 00 00

00 00 XX XX XX XX XX XX (XX=Don't
Care)

BF F9 00 00 00 00 00 00

BF BA 00 00 00 00 00 00

BC FE 22 38 00 00 00 00

APPENDICES Page OA-5

A.4 Programming Tips and Techniques

This section provides some tips on getting the most from your 99/9640
FORTRAN system.

A.4.1 Inter-Program Communication

It is sometimes desirable for two or more programs to communicate (or
pass data between) each other. This can be accomplished by one of the
following two methods:

Passing Data Using Disk Files

Programs may pass data between using disk files. Consider the
following two programs, program A and program B:

PROGRAM A
X = 1.0
I = 12
CALL OPEN (1, 'DSK1.TT •, 1, 0, 0, 0, 16, IERR)
WRITE (1, 9100) X, I

9100 FORMAT (F10.6, 16)
CALL CLOSE(l)
CALL CHAIN ('DSK1.BX ', ERROR)
END

PROGRAM B
CALL OPEN (1, 'DSK1.TT ', 2, 0, 0, 0, 16, IERR)
READ (1, 9100) X, I

9100 FORMAT (F10.6, 16)
CALL DELETE(l)
WRITE (6, 9200) X, I

9200 FORMAT (IX, F10.6, 16)
END

After running program A, the file ' TT" would be created on disk drive
1, and would contain one record with two values, one for X and one for
I. Program B re-opens the file for read access, reads the values of X
and I, deletes the file, and writes the values of X and I to the
screen.

Passing Data Using COMMON

Since the COMMON area is neither saved or restored (when the SAVE or
RESTORE functions are used), data can be passed from one program to
other using COMMON. Consider the following programs, A and B:

PROGRAM A
COMMON X,I
X = 1.0
I = 12
CALL CHAIN ('DSK1.BX ', ERROR)
END

APPENDICES Page OA-6

PROGRAM B
COMMON X,I
WRITE (6, 9200) X,I

9200 FORMAT (IX, F10.6, 16)
END

Program A assigns values for X and I, which are allocated in COMMON.
Program B then prints the values for X and I, which were contained
within the COMMON block. The values in this example would be identical
a6 if the data was passed via a disk file.

Note that the COMMON method requires no extra disk transfers for the
inter- program data passing.

This technique will work as long as the programs are loaded and run
sequentially, using the TI-99 GPL implementation of the FORTRAN system.
Do NOT attempt this using the MDOS implementation, memory is
dynamically assigned using MDOS, and this method is not guaranteed to
work, since the second program will not likely get the same memory as
the first program.

A.4.2 Optimizing Object Code

Various techniques can be used to shrink the overall size of a program.
These techniques include:

1. Careful inspection of your program to ensure that you have not
declared variable names which you are not using.

2. Use integer arrays or variables to represent integer values. For
example, the statements:

X = 1.0
I = 1

look similar, but the first expression requires 4 bytes of data al
location (and 16 bytes of code), but the second requires only 2 bytes
of data area, and 8 bytes of code.

3. Group together simple common expressions. For example, the
statements:

1 = 0
J = 1
K = 0

generate 24 bytes of object code, while the statements:

1 = 0
K = 0
J = 1

generate 20 bytes of object code.

4. Use implied do loops in read and write statements. For example:

•PPENDICES Page OA-7

DIMENSION IARRAY(IO)
READ (6, 9100) (IARRAY(I),1=1,10)

uses much more code and is slower than the equivalent:

DIMENSION IARRAY(IO)
READ (6, 9100) IARRAY

5. U6e arithmetic multiply instead of the ISHFT subroutine. The
optimizer replaces multiplies for powers of two up to 256 (2, 4, 8,
16, 32, 64, 128 and 256) with appropriate left shifts. For example,
the statements:

I = ISHFT (10, 2)

and

I = 10 * 4

both produce the same result in I (40), but the first statement takes 8
bytes of code more than the second statement, and involves all of the
overhead of calling a library routine.

6. Use constant subscripts in arrays whenever possible. For example,
consider the two cases:

A(l), and

1 = 1
A(I)

since the first case has a constant (1) for a subscript, then FORTRAN
will calculate its address at compile time. The second case uses a
variable (I) for the subscript, and forces FORTRAN to calculate the
subscript at execution time.

7. Pass data via COMMON rather than by dummy arguments. Each dummy
argument requires special execution time linkages to take place, which
is time consuming. Passing data via COMMON requires no linkages, all
addressing is calculated at compile time.

H f r i i i » u n - c j raye urt-o

A.5 Screen Organizations (TI-99 GPL Implementation Only)

99 FORTRAN has two different screen modes, graphics mode (32 column)
and text mode (40 column).

Graphics mode is the mode in which your program is initiated, and is
similar to the mode used in BASIC. the screen is organized as 32
columns by 24 rows. Sprites and automatic sprite motion are allowed.
Also, the color of character groups can be changed by calling the COLOR
subroutine. Each character is defined by an 8 x 8 pixel.

Text mode is the mode used by the editor while in screen edit mode.
The screen is organized as 40 columns by 24 rows. Sprites and sprite
motion are not allowed. The color of ail characters is set to white on
light blue (or to the colors specified in the Preferences Utility), and
is not changable by color group. Each character is defined by a 6 x 8
pixel.

The following table shows the various attributes and VDP memory
organization of the graphics and text modes:

Number of Rows:
Number of Columns:
Pixel Size:
Sprites Allowed?
Screen Image Table Address:
Sprite Attribute List:
Color Table:
Sprite Descriptor Table:
Sprite Motion Table:
Character Pattern Table:

32 column
(graphics)

24
32
8 x 8
yes

000-2FF
300-37F
380-400
400-77F
780-7FF
800-FFF

40 column
(text)

24
40
6 x 8
no

000-3A1
n.a.
n.a.
n.a.
n.a.

800-FFF

To switch between the two screen modes, two library subroutines are
provided as follows:

CALL SET32 - Set 32 column mode
CALL SET40 - Set 40 column mode

When either subroutine is called the screen is cleared; all sprites are
stopped and deleted; the mode of the screen is changed; and the
background color of the screen is changed to the colors specified in
the Preferences Utility.

Note the the subroutines HCHAR, VCHAR, and GCHAR automatically adjust
for the different modes of the screen; as the row/column coordinates
are located properly in the screen image table.

APPENDICES Page OA-9

A.6 Assembly Language Subprograms

Subroutines and Function Subprograms called by FORTRAN programs may be
written in TI-99 Assembly Language. The Editor/Assembler module is
required to write an assembly language subprogram. This module is not
provided with this package.

Assembly language subroutines are referenced exactly the same way as a
FORTRAN subroutine or function subprogram. They are loaded into the
data region of your program at link time.

A.6.1 Subprogram Structure

The name of the subroutine or function subprogram is limited six
characters. A DEF statement must be included in the subprogram which
points to the first word of the subprogram.

The first word of an assembly language module must contain the minus
number of arguments to be passed to the subroutine. If no arguments
are to be passed, then the word would be zero (0).

The second word of an assembly language module must point to a 4 byte
data area which is used by the FORTRAN package for inter-module
linkage.

Following the first and second words is the body of the routine. This
may consist of any valid assembly language code.

Arguments are passed to the assembly language routine as addresses. If
the calling program contains fewer arguments than the subprogram
expects, then the missing arguments have addresses of zero.

To return to the calling routine, register 3 and register 11 must be
loaded with values in the data area. Register 3 is loaded with the
first value in the data area, while register 11 is loaded with the
second value. After the registers have been loaded, then a return to
the calling routine is executed by an indirect branch through register
11.

The following illustrates the subprogram layout:

DEF SUBR
*
SUBR EQU $

DATA -1 1 ARGUMENT
DATA BASEAD DATA AREA ADDRESS

body of routine

MOV gBASEAD,R3 RESTORE BASE R3
MOV 0RETUAD,R11 RESTORE RETURN Rll
B *R11 RETURN

*
BASEAD BSS 2 CALLER'S R3

RETUAD BSS 2 RETURN ADDRESS
ARG1AD BSS 2 1ST ARGUMENT ADDRESS

APPENDICES Page OA-10

Your routine must not alter the contents of RIO. If you must use this
register, save them on entry and restore them on leaving.

If you are passing back an integer value to the calling program for a
Function subprogram call, R5 must contain the value before exit. Also,
the status register must reflect the correct value in R5, if the
function subprogram is used in an IF statement. For example, the above
RETURN code should be modified for INTEGER type function returns:

MOV §BASEAD,R3
MOV §RETUAD,R11
MOV R5,R5 SET STATUS REGISTER
B *R11 RETURN

If the function type is INTEGER *1, then the value is returned in the
high byte of R5, i.e.:

MOVB §BVALUE,R5

If the function type is INTEGER *4 or REAL *4, then the value is
returned in registers R5 and R6, i.e:

MOV eVALUE1,R5
MOV §VALUE2,R6

If the function type is REAL *8 (DOUBLE PRECISION), then the value is
returned in registers R5, R6, R7, and R8:

MOV §VALUE1,R5
MOV §VALUE2,R6
MOV ?VALUE3,R7
MOV §VALUE4,R8

The return status for all of the types is set properly with the
instruction:

an additional compare must be

MOV R5,R5

except for INTEGER *4, in which case
added if R5 is equal to zero, i.e.:

MOV R5,R5
JNE GOTCOM
MOV R6,R6

GOTCOM EQU $

If the function type is LOGICAL *2, then the module must return a 0 in
R5 if the function is .FALSE., or a 1 if it is .TRUE.. The status
register must also be set as with INTEGER *2 type functions.

A.6.2 Utilities

APPENDICES Page OA-11

Various utilities described in the Editor/ Assembler Manual are
available for your use. Assembly language subroutines may contain a
REF statement.

The following utilities (and their associated absolute memory
addresses) are available using the TI-99 GPL implementation of 99
FORTRAN:

Name

XMLLNK
KSCAN
VSBW
VMBW
VSBR
VMBR
VWTR
DSRLNK

Address

203C
2040
2044
2048
204C
2050
2054
2058

Description

Console Subroutine Linkage
Keyboard Scan Routine
VDP Single Byte Write
VDP Multi-Byte Write
VDP Single Byte Read
VDP Multi-Byte Write
VDP Write Registers
Device Service Routine Linkage

In addition, the following addresses are useful:

MENU
PRINTF
SET40F
LOGSTR
LOGEND
DATSTR
DATEND
COMEND
CLOCK1
CLOCK2
CRTXY
NUMLIN
CHAPPL
EXCDEV
PRTDOP
DSKSS
BOTSHE
KEYUNT
KEYFND
DSRPTR

2060
2002
2004
200E
2010
2012
2014
2016
2028
202A
2036
2036
2038
208E
209C
20A4
20A6
8374
8375
8356

Restart Point for Menu Routine
Check Key on Print Flag (-1) or Not (0)
32 Column (0) or 40 Column (-1) or 80 (1) Mode
Start of Logic Area Address
End of Logic Area Address
Start of Data Area Address
End of Data Area Address
End of Common Area Address
Double Word l/10th Second Clock, Word 1
Double Word l/10th Second Clock, Word 2
Current Screen Cursor Position (Absolute VDP Addr)
Number of Lines per Printer Page
Length of a Line (used to open default printer)
Execution Time Wild Card Device Number
Default Printer Device Number
Address of "Disk Type Devices" Table
Address of Boot Disk Name
Key Unit Number
Key button ASCII code returned
DSR routine pointer

Note that with the 9640 MDOS implemenation, the use of the MDOS XOP
calls usually eliminate any need for hard-coded addresses. Refer to
the programmer's MDOS documentation (not included in this manual) for
specific information.

A.6.3 Restrictions

1. Note that the GPL (Graphics Programming Language) routines have been
omitted. The FORTRAN system operates outside of the GPL environment.

APPENDICES Page OA-12

2. The stack area in CPU ram is used by the FORTRAN system for other
purposes. The stack operations described for the XMLLNK routine (in
the Editor/ Assembler manual) should not be used.

3. You must compile the assembly routine using the uncompressed object
mode. If you attempt to link an assembly language module with
compressed object code, then the linker will respond with the error:

Illegal Binary Module

and the link will abort.

4. All assembly modules must be compiled relocatable (not absolute).

A.6.4 Notes

1. The internal representation of Floating Point Numbers is normal
TI-99 RADIX 100 notation. REAL *4 values are truncated to 4 bytes (2
words), with the remaining four bytes (two words) in the floating point
accumulator set to zero. All operations on single precision values are
done internally as double precision.

2. A module may contain multiple assembly language subroutines or
function subprograms. Merely define more DEF's for the multiple entry
points.

A.6.5 Example

The following routine executes the CALL FILES function, and is included
in object form on the TI-99 GPL LIBRARY disk:

TITL 'FILES - SET NUMBER OF DISK FILES'
IDT 'FILES'

*
* THIS SUBROUTINE SETS THE NUMBER OF DISK
* FILES WHICH CAN BE OPENED.
*

* CALLING SEQUENCE:

* CALL FILES (NUMBER FILES)

* WHERE:
*
* NUMBER - IS AN INTEGER CONSTANT OR VARIABLE
* FILES WHICH DEFINES THE NUMBER OF FILES
* TO OPEN. LOW LIMIT IS 1 FILE, HIGH
* LIMIT IS 9 FILES.
*
* DEFINITIONS:
*

DEF FILES
*
* EQUATES:

NIOTAB
10
OPFILE
IOMAP
IOTADR
VDPFRE
VMBW
DSRLNK
FILPTR
DSRPTR
ERROR

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

8
>2074
>2070
>2078
>2000
>1000
>2048
>2058
>832C
>8356
>000E

*
* MAIN ENTRY:
* FILES EQU

DATA
DATA
MOV
JEQ
MOV
JLT
JEQ
CI
JGT
AI
SWPB
MOVB

$
-1
BASEAD
«NOFILE,R5
BADVAL
*R5,R5
BAOVAL
BADVAL
R5,9
BADVAL
R5,>0030
R5
R5,§PAFILE

I OF I/O TABLES
INPUT/OUTPUT PROCESSOR
FILE OPEN PROCESSOR
I/O REMAP ROUTINE
I/O TABLES ADDRESS
FREE AREA IN VDP RAM
VDP MULTI BYTE WRITE
CALL DSR ROUTINE
POINTS TO FILE DESCRIPTOR
DSR POINTER
EXECUTION TIME ERROR ENTRANCE

1 ARGUMENT
TEMP DATA AREA
GET # OF FILES

GET # OF FILES TO OPEN

BRIF NOT IN RANGE 0 < NOFILE < 10

+ ASCII 0

SET PAB FILE DESCRIPTOR

APPENDICES Page OA-13

CLEAR THE I/O TABLES (CLOSE ALL OPEN FILES)

IOTCLO

IOTDON

LI
MOV
MOV
EQU
MOV
MOV
JEQ
LI
BL
EQU
A
DEC
JNE

R5,NIOTAB
R5,*IOTCNT

GET # OF I/O TABLES
AND SAVE

§IOTADR,eiOTPNT
$
§IOTPNT,R5
*R5,0ALNUMB
IOTDON
R4,ALCL0S
eio
$
GK8,eiOTPNT
3IOTCNT
IOTCLO

IS THERE A FILE HERE?

BRIF NO, NOTHING TO DO
CLOSE THE FILE
DO IT

INCREMENT TO NEXT PACKET

BRIF MORE

CALL DISK DSR TO REMAP DISK BUFFERS

LI
LI
LI
BLWP
AI
MOV
LI
MOV
BLWP
DATA

RO,VDPFRE
R1,FILPAB
R2,>30
8VMBW
R0,9
RO,GDSRPTR
R5,VDPFRE-7
R5,eFILPTR
CDSRLNK
>000A

VDP FREE AREA
FILE DUMMY PAB

WRITE THE PAB

SET DSR POINTER
SET POINTER TO FILE DESCRIPTOR

CALL
SUBROUTINE

CALL MENU TO REMAP I/O TABLES

BLWP 3IOMAP REMAP THE I/O TABLES

FINALLY, REOPEN CRT AS FILE 6

LI R0,6 OPEN CRT AS FILE 6
LI R1,CRTPAB
BL #OPFILE
JMP JUSTRE

BAOVAL EQU $
BLWP *R10 CALL EXECUTION SUPPORT PACKAGE
DATA ERROR TO REPORT ERROR
DATA 'BF* BAD I OF FILES (1-9)

*
JUSTRE EQU $

MOV £BASEAD,R3 RESTORE BASE
MOV §RETUAD,R11 RESTORE RETURN ADDRESS
B *R11 AND RETURN

DATA AREA

BASEAD BSS 2 BASE ADDRESS SAVE
RETUAD BSS 2 RETURN ADDRESS
NOFILE BSS 2 NUMBER OF FILE SPACES TO CREATE

LOCAL VARIABLES

IOTCNT BSS 2 COUNTER FOR CLOSE LOOP
IOTPNT BSS 2 POINTER FOR CLOSE LOOP
KB DATA 8 A CONSTANT

COMMAND LIST

ALCLOS DATA >00FE CLOSE FILE ORDER CODE
ALNUMB DATA 0

PERIPHERAL ACCESS BLOCKS

FILPAB EQU $
DATA >C801

PAFILE DATA >30B6
BYTE 0,0,0,0,0
BYTE 5
TEXT 'FILES '
EVEN

CRTPAB EQU $
BYTE 0,3,0,0,80,0,0,0,0,3
TEXT 'CRT'
EVEN
END

index Page 1-1

• Format Code 3-23, 3-30 CALL
/ Format Code 3-23,3-30 CALL
? Help Command 6-5 CALL
A Format Code 3-23,3-27 CALL
ABS 7-8 CALL
ABS 7-8 CALL
ACOSH 7-10
AINT 7-8 CALL
ALGAMA 7-10 CALL
Allocation Errors 4-12 CALL
ALOG 7-9 CALL
ALOG10 7-9 CALL
ALOG2 7-9 CALL
AMAXO 7-8 CALL
AMAX1 7-8 CALL
AMINO 7-8 CALL
AMIN1 7-8 CALL
AMOD 7-8 CALL
ARCOS 7-9 CALL
Arithmetic IF Statemnt 3-12,3-16 CALL
Arrays 3-8,3-35 CALL
ARSIN 7-9 CALL
ASCII Codes A-3 CALL
ASINH 7-10 CALL
Assignment Statements .3-11 CALL
ATAN 7-9 CALL
ATAN2 7-9 CALL
ATANH 7-10 CALL
AUTOEXEC 1-4 CALL
B (Breakpoint) Command 6-5,6-8 CALL
BASIC 3-2 CALL
Binary 3-6 CALL
BUGS (Programming)6-1 CALL
C Format Code 3-23,3-31 CALL
C99 2-6 CALL
CALC 8-l,A-l,A-2 CALL
CALL BLKSDN 7-48 CALL
CALL BLKSLE 7-48 CALL
CALL BLKSRI 7-48 CALL
CALL BLKSUP 7-48 CALL
CALL BREAD 7-14 CALL
CALL BWRITE 7-14 CALL
CALL CHAIN 7-37,A-5 CALL
CALL CHAR 5-17,7-18 CALL
CALL CHARPA 5-17,7-19 CALL
CALL CHEDAT 7-53 CALL

CHETIM 7-53
DELAY 7-37
DELETE .7-13
DELSPR 5-19,7-24
EXIT 7-36
FILES 5-14,7-13,9-2

A12
GCHAR 5-15,5-19,715
GETMOD 7-39
GETMSE 7-51
GETMSR 7-51
GETPIX 5-21,7-45
GETPOS 7-41
GETTWN 7-50
GETVPG 7-41
GVIDTB 7-32
HBLKCP 7-46
HBLKMV 7-46
HCHAR 5-15,519,715
JOYST 7-29
KEY 5-17,7-28
LBLKCP 7-46
LBLKMV 7-46
LOADM 7-31
LVMBR 5-21,7-30
LVMBW 5-21,7-30
MAGNIF 5-19,7-25
MALLOC 7-57
MOTION 5-15,5-19,7-23
MPLCPE 7-58
OPEN 518,7-11
POSITI 5-19,7-24
PRINTC 7-20
QUIT 7-35
RESCHA 7-50
RETDOW 7-55
RTFREE 7-56
RTMAPR 7-59
RTPAGE 7-58
SCREEN 5-14,7-17
SCRLDN 7-42
SCRLLE 7-42
SCRLRI 7-42
SCRLUP 7-42
SET32 7-19
SET40 7-19

Index Page 1-2

CALL SET80 7-20
CALL SETBRD 7-43
CALL SETMOD 5-14,7-39
CALL SETMSE 7-51
CALL SETPAL 5-18,5-19
CALL SETPAL 7-43
CALL SETPIX 5-21,7-44
CALL SETPOS 5-19,7-40
CALL SETTWN 7-49
CALL SETVEC 7-45
CALL SETVPG 7-41
CALL SOUND 5-20,5-21,7-26
CALL SOUSTA 7-26
CALL SPCHAR 7-23
CALL SPRITE 5-14,5-19, 7-2
CALL Statement 3-47
CALL VCHAR 5-15,5-19,7-16
CALL VMBR 5-21,7-30
CALL VMBW 5-21,7-30
CALL VRFR 7-31
CALL VWTR 7-31
CALL WAIT 7-35
Carriage Control 3-33
Character Pattern Nos .7-18
Color Codes 7-17
Colors 7-18,9-2
COMMON Statement 3-36,A-5
Compiler Operation4-1/4-13,8-2
Computed GOTO Statement3-12
Constants 3-2 to 3-6
CONTINUE Statement 3-16,3-16
COS 7-9
COSH 7-10
COTAN 7-9
Cursor 9-2
D (Disassembly) Command6-5,6-19
D Format Code 3-23,3-25
DABS 7-8
DACOS 7-9
DACOSH 7-10
DASIN 7-9
DASINH 7-10
Data Model 8-2
DATA Statement 3-40
DATAN 7-9
DATAN2 7-9
DATANH 7-10
Date/Time 7-53
DB Option 4-2
DBLE 7-8
DCOS 7-9
DCOSH 7-10
DCOTAN 7-9
DDIM 7-10
Debugger 5-9,5-10,5-12,

6-1 to 6-22

Debugger Syntax 6-4
Declaration Statements 3-35 to 3-42
DERF 7-8
DERFC 7-8
DEXP 7-10
DEXP10 7-10
DEXP2 7-10
DFLOAT 7-8
DGAMMA 7-10
DIM 7-10
DIMENSION Statement ...3-36
DINT 7-8
Disk Contents l-l,A-l,A-2
DLGAMA 7-10
DLOG 7-9
DLOG10 7-9
DLOG2 7-9
DM Option 4-2
DMAX1 7-8
DMIN1 7-8
DMOD 7-8
DO Statement 3-15
DO WHILE Statement 3-16,3-17
Double Precision 3-4
DRIVERS 8-1,8-10,A-2
DSIGN 7-10
DSIN 7-9
DSINH 7-10
DSQRT 7-9
DTAN 7-9
DTANH 7-10
DVAL 7-35
E Format Code 3-23,3-25
EDITOR 1-2,2-1/2-10
EDITOR/ASSEMBLER 1-2,1-3,A-9,

A-10,A-11
END Statement 3-18
ENDDO Statement 3-17
EQUIVALENCE Statement .3-37
ERF 7-8
ERFC 7-8
Errors 4-6,4-7/4-13

5-6/5-7,5-11
Execution Errors 5-11 to 5-21
EXP 7-10
EXP10 7-10
EXP2 7-10
Explicit Declarations .3-38
EXTENDED BASIC 1-2,1-3
EXTERNAL Statement 3-41
F Format Code 3-23,3-24
FDEB 6-2
Files 2-1
FILEZAP 8-1,8-11,A-2
FL Library 7-1
FLIB MDOS Command 7-3

Index Page 1-3

FLOAT 7-8
FORMAT Statement 3-23,5-15
FORTRAN 77 1-1
FORTRAN Compiler 3-1 to 3-51
FORTRAN Librarian 7-2 to 7-5
FORTRAN Names 3-6
FORTRAN Register Usage 6-16
FORTRAN Statements 3-1
FORTRAN Variable Types 3-7
FRACTALS 8-1,8-10,A-2
FUNCTION Calls 3-46
FUNCTION Statement 3-45
G (GO) Command 6-5,6-18
GAMMA 7-10
GL Library 7-1
GOTO Statement 3-12
H (Hexadecimal) Command6-5,6-17
H Format Code 3-23, 3-25
Hexadecimal 3-5
Hollerith 3-4,3-29
I Format Code 3-23,3-26
I/O Errors 5-16
IABS 7-8
IAND 7-9
IDIM 7-10
IDINT 7-8
IEOR 7-9
IF Statement 3-12
IFIX 7-8
IMPLICIT Statement 3-39
INCLUDE Statement 3-50
Input/Output 3-19 to 3-34
Input/Output Assignment3-21,3-22
INT 7-8
INTEGER *1 3-38
INTEGER *2 3-38
INTEGER *4 3-38
IOR 7-9
IRAND 7-8,7-35
ISHFT 5-20,7-10
ISIGN 7-10
IVAL 7-35
JIABS 7-8

JIAND 7-9
JIEOR 7-9
JIOR 7-9
Keyboard Codes 7-28
KEYS 1-5,2-3
KIABS 7-8
KIAND 7-9
KIEOR 7-9
KIOR 7-9

L (Load) Command 6-5,6-6
L Format Code 3-23,3-26

Label Errors 4-12
Library Subprograms ...3-48,5-2,5-4,

7-1 to 7-59
LINKER 5-1 to 5-7,8-3
Listings 4-4
LOAD Utility (TI-99) ..5-8,8-4
Logic Model 8-2
LOGICAL *2 3-38
Logical 3-4
Logical Assignments ...3-11
Logical IF Statement ..3-14
M Command 6-2,6-5,6-11
M Format Code 3-23,3-32
Maps 4-4,5-4,5-11
Mathematical Functions 7-6 to 7-10
MAX 7-8
MAX0 7-8
MAX1 7-8
Memory Manager 7-56
Memory Usage 6-2,7-56
MENU 1-4
MIN 7-8
MIN0 7-8
MINI 7-8
MINI-MEMORY 1-2,1-3,4-1
ML Library 7-1
MOD 7-8
Mouse 7-51
N Format Code 3-32,5-17
NOT 7-9
Numeric Expressions ...3-8
OB Option 4-2
Octal 3-5
Optimizer 1-1,A-6
P (Parameter) Command .6-5,6-21
P-Code 1-1
Parameter Lists 3-43
PAUSE Statement 3-16,3-17
PEEK 7-9
PEEKI 7-9
PEEKJ 7-9
PEEKK 7-9
PEEKV 7-9
PEEKVI 7-9
PEEKVJ 7-9
PEEKVK 7-9
Preferences 9-1 to 9-4
Printer Label 9-2,9-3
Printing 2-4
PROGRAM Statement 3-49
Programming Examples ..8-1 to 8-11
Q (Quit) Command 6-5,6-15
Q Format Code 3-23,3-33
QDE 2-1,2-6 to 2 1
R (Register) Command ..6-5,6-15
R Format Code 3-2 3,3-27

Index Page 1-4

RADIX 100 NotationA 4
RAM Disk 4-1,4-2,8-10,8
READ Statement 3-19,5-16
REAL *4 3-38
REAL *8 3-38
Relational Expressions 3-9
Repeat Factors 3-23
REPEAT Statement 317
Restrictions 4-13
RETURN Statement 3 16
RUN, RUN/DEBUG 5-9
S (Select) Command6-5,6-8
SC Opt ion 4-2
SC$1FIL$ 4 1
SC$2FIL$ 4 1
Screen Organizations ..A-8
SIGN 7-10
SIN 7-9
Single Precision 3-3
SINH 7-10
SNGL 7-8
Sprites 7-22 to 7-25
SQRT 7-9
Statement FUNCTIONS ...3-44
STOP Statement 3-16,3-18,7-36
Strings 3-30
Structured IF Statement3-14,3-16
Subprograms 3-43 to 3-48
Subroutines 3-46
Subscripts 3-8,5-20
Symbol File (Debug) ...5-2,5-4,6-6
T (Trade Screen) 6-5,6-16
TAN 7-9
TANH 7-10
Tl-Writer 1-2,1-3
Utilities 2-2,9-1 to 9-4
V (View) Command 6-5,6-20
VAL 7-35
Variable Lists 3-20
VDP Memory 5-21
W (Workspace) Command .6-5,6-16
Warnings 4-7
Wild Card Label 9-2
WRITE Statement 3-20,5-16
X (X-Bias) Command6-5,618
X Format Code 3-23,3-31
Y (Y-Bias) Command6-5,6-18
Z (Z-Bias) Command6-5,6-18
Z Format Code 3-23,3-25

1

