
1
Programmer’s Development Kit

The Mouse Driver

Version 2

Programmer’s Development

Package

For the Geneve 9640 Computer

© 1990 – Bruce Hellstrom

All Rights Reserved

2
Programmer’s Development Kit

THE MOUSE DRIVER VERSION 2

PROGRAMMER’S DEVELOPMENT KIT

© 1989, 1990 BRUCE HELLSTROM

Table of Contents
OVERVIEW ... 4

COMPONENTS ... 4

HOW IT WORKS ... 4

SOME TERMS TO KNOW ... 5

1) Disabled ... 5

2) Inactive .. 5

3) Active .. 5

LOADING THE MOUSE DRIVER .. 5

REMOVING THE MOUSE DRIVER .. 5

ACTIVATING THE MOUSE DRIVER ... 6

DEACTIVATING THE MOUSE DRIVER ... 6

PROGRAMMING EQUATES .. 6

THE MOUSE DRIVER FLAG BYTES .. 7

LOADED flag .. 7

ENABLE flag ... 7

DSABLD flag ... 7

THE MOUSE DRIVER COMMAND SET ... 8

Command: >0001 Set Mouse .. 8

Command: >0002 Hide Mouse .. 9

Command: >0003 Show Mouse ... 9

Command: >04xx Change Mouse Speed ... 9

Command: >0005 Disable Mouse Driver ... 10

Command: >FFFF Disable Mouse Driver .. 10

USING THE READ ONLY REGISTERS ... 10

MSX ... 11

MSY ... 11

BUT1 to BUT3 .. 11

3
Programmer’s Development Kit

MSPD ... 11

NOTES ON USING THE MOUSE DRIVER ... 11

IN CLOSING .. 12

ACKNOWLEDGEMENTS ... 13

ADDENDUM .. 13

4
Programmer’s Development Kit

THE MOUSE DRIVER VERSION 2

© 1989, 1990 BRUCE HELLSTROM

ALL RIGHTS RESERVED

OVERVIEW

The Mouse Driver is a MDOS utility for programmers to effectively offer mouse support to new

program development for the Geneve 9640 computer. It is a very easy to use and powerful utility

designed to relive the programmer of the task of tracking and updating mouse position and sprite

relocation. The ultimate goal of this driver is to set a standard for other mice that may come

along so that programs will not have to be modified to be compatible with another mouse. This

in turn should generate more mouse driven software for the Geneve. This package with its

examples should allow a programmer to see just how easy it can be to add mouse support to

their software without a lot of time consuming code writing.

COMPONENTS

The Mouse Driver programmer’s developer kit comes with the following:

1) This documentation manual explaining in detail how to access the Mouse Driver with your

program.

2) A diskette which contains a registered development copy of the Driver for development

of mouse driven software. Also on the diskette is a Mouse Driver test program and

commented assembly source code to use as an example for using and programming with

the Driver. There is also a Readme file that may contain late breaking information that

did not make it into this manual.

HOW IT WORKS

The Mouse Driver is loaded into memory from the command line and then becomes a part of the

MDOS interrupt routine. Once loaded it integrates itself into the interrupt structure and remains

present until a cold boot is done or the computer is shut off. The Driver has three states of activity

which are outlined in the next section. It can range from being totally transparent to MDOS to

being constantly active even at the MDOS prompt. By use of several registers and flags, your

program can constantly be informed of the current state and/or status of the Mouse Driver.

5
Programmer’s Development Kit

SOME TERMS TO KNOW

There are three states of the Mouse Driver that you should be familiar with when reading this

documentation.

1) Disabled – When in this state, the Mouse Driver will not return any information to the

user program. It also does no tracking of the mouse or checks for any button presses.

Basically, when disabled, the interrupt routine passes by the Mouse Driver. This state will

keep the Mouse Driver from conflicting with programs that use the register space in high

memory normally used by the Mouse Driver. The user may put the driver in a disabled

state at any time by pressing all three of the mouse buttons at the same time. The

programmer has a flag that can be checked to determine if the Driver has been put into

this state. This is the normal state of the Driver when first loaded from the command line.

2) Inactive – When in this state, the Mouse Driver does not return any information to the

user program but it is checking button status and it also checks the command register for

an activation or disabling command. This state will overwrite some of the register area in

high area and may be inappropriate for some problem programs that use memory in that

area.

3) Active - In this state, the Mouse Driver is fully active, returning both location and button

status to the user program and updating pointer location regardless of video mode if not

hidden by the programmer.

LOADING THE MOUSE DRIVER

The Mouse Driver is loaded into memory from the command line by typing MOUSE20 at the

MDOS prompt at the MDOS prompt. This loads both the MOUSE20 and MOUSE21 files from your

disk. If the load is successful, you will see a message: “MOUSE DRIVER INSTALLED” along with

the current version number of the Driver and your registration number and name. If you try to

load it after it has been previously installed, you will receive an error message. Upon successful

installation, the Mouse Driver will be in a ‘disabled’ state.

REMOVING THE MOUSE DRIVER

Once installed, the Mouse Driver becomes a part of the MDOS interrupt routine and cannot be

removed without a cold-boot or turning the 9640 off completely.

6
Programmer’s Development Kit

ACTIVATING THE MOUSE DRIVER

If the Mouse Driver is disabled as when first loaded, or after pressing all three buttons, it will be

necessary to first write any non-zero value to the byte at >0062 of your program. This will move

the Mouse Driver to the inactive state. You will see this address equated later with the other

flags and registers your program can use to access the mouse.

If the Mouse Driver is inactive, then writing the >0001 command to the command register will

activate the Driver. Commands are explained in detail in a later section.

DEACTIVATING THE MOUSE DRIVER

If the Mouse Driver is active, it can be put in the deactive state by writing command >0005 to the

command register.

To put the Mouse Driver in the disabled state can be accomplished in two ways.

1) Pressing all three buttons at the same time will put the Driver in the disabled state.

2) Writing command >FFFF to the command register will also put the Driver in the disabled

state as above.

Unless in use by a program, the Mouse Driver should be left in a disabled state to avoid any

conflicts with programs that do not expect a driver to be loaded in memory. Some programs use

the area in memory where the Mouse Driver’s registers are located and having the Driver in a de-

activated or activated state may cause unpredictable results.

PROGRAMMING EQUATES

The Mouse Driver can be accessed by programs in any language that allows direct access to

memory of the Geneve. The Driver is accessed through a series of registers beginning at address

>F200. The Driver also has three flag registers which allow the programmer to know the current

status of the Driver at all times. Current versions of Myarc Advanced Basic conflict with the

memory used by the Mouse Driver and the Driver should be placed in a disabled state before

attempting to run Advanced Basic. A description of each of the registers and flag registers used

by the Driver are below.

COMREG EQU >F200 The Mouse command register (2 bytes) (wr only)

MSX EQU >F202 The current mouse X position (2 bytes) (rd only)

MSY EQU >F204 The current mouse Y position (2 bytes) (rd only)

7
Programmer’s Development Kit

BUT1 EQU >F206 Current status of mouse button 1 (1 byte) (rd only)

BUT2 EQU >F208 Current status of mouse button 2 (1 byte) (rd only)

BUT3 EQU >F20A Current status of mouse button 3 (1 byte) (rd only)

MSSETX EQU >F20C Mouse set X (for set mouse) (2 bytes) (wr only)

MSSETY EQU >F20E Mouse set Y (for set mouse) (2 bytes) (wr only)

MSPD EQU >F210 Mouse speed setting (2 bytes) (rd only)

ENABLE EQU >0062 Mouse Driver enable register (1 byte)

LOADED EQU >0063 Mouse Driver Loaded flag (1 byte)

DSABLD EQU >1901 Mouse Driver disabled flag (1 byte) *

*This flag is located in the System Header page of memory (Page 0)

THE MOUSE DRIVER FLAG BYTES

LOADED flag – This flag allows the programmer to determine if the Mouse Driver has been

previously loaded by the user. This byte is located at >0063 in your task’s header

page (execution page 0). This byte contains the hex value >FF if the driver is

loaded.

ENABLE flag - This flag allows the programmer to activate the Driver when in a disabled state

by writing any non-zero byte to this flag register. It is located at address >0062

of your task’s header page (execution page 0). The programmer can determine if

this is necessary by checking the DSABLD flag located in the system header page.

(See section on the DSABLD flag.)

DSABLD flag - This flag allows the programmer to determine if the Mouse Driver has been

disabled either by the user or by software. This byte is located at offset >1901 in

the system header (page 0). This is so that any program may access this byte to

determine status of the Driver. Your program must place page >00 in one of the

mapper registers located between >F110 and >F117 before your program can

check this flag. If the driver is disabled, this byte will contain a hex value of >00 if

the Driver is disabled and a value of >FF if the Driver is in an active or inactive

state.

8
Programmer’s Development Kit

THE MOUSE DRIVER COMMAND SET

The programmer communicates with the mouse through a set of commands written to the

command register at >F200. Various parameters are set to the necessary registers prior to writing

the command. The commands and the necessary parameters are outlined in the next section.

NOTE: All writing to the mouse registers should be done with interrupts disabled (LIMI 0).

Interrups should be enabled after writing your command to the command register. Also,

if your task re-maps a new page of memory into execution page 7, you should disable

interrupts prior to mapping in the new page 7. You should disable interrupts prior to

mapping in the new page and clear the word at >F200 before enabling interrupts again as

a precaution against unwanted data accidentally writing a command to the Mouse Driver.

An example of this is illustrated in the sample code distributed with this package.

Command: >0001 Set Mouse

This command sets the current mouse position to the coordinates placed in the MSSETX

and MSSETY registers. After placement of the X and Y coordinates, you write >0001 to the

command register at >F200. The Mouse Driver will relocate the mouse to the coordinates

you specify and activate either the sprite or a text mode flashing cursor pointer for either

text mode 1 or 2. The Mouse Driver will automatically adjust itself for the current screen

width dependent upon video mode. You should always execute this command after

changing video modes to be sure the pointer sprite has the right character designation

and color.

 Example – Setting mouse at X 32 Y 32

 LIMI 0 Interrupts OFF!

 LI R0,>0020

 MOV R0,@MSSETX Set X coordinate (pixel col)

 MOV R0,@MSSETY Set Y coordinate (pixel row)

 LI R0,>0001

 MOV R0,@COMREG Execute command

 LIMI 2 Enable interrupts

9
Programmer’s Development Kit

Command: >0002 Hide Mouse

This command hides the mouse pointer sprite by changing its color to transparent so it is

invisible. The sprite remains active as do the location registers. In text modes, this

command will turn off the flashing text pointer.

 Example

 LIMI 0 Interrupts OFF!

 LI R0,>0002

 MOV R0,@COMREG

 LIMI 2 Enable interrupts

Command: >0003 Show Mouse

This command shows the mouse pointer sprite again after hiding it with the hide mouse

command above. If for some reason the sprite was disabled while hidden such as a change

to a text mode, this command will reactivate the sprite pointer. In text modes, this

command will reactivate the flashing text cursor.

 Example

 LIMI 0 Interrupts OFF!

 LI R0,>0003

 MOV R0,@COMREG

 LIMI 2 Enable interrpts

Command: >04xx Change Mouse Speed

This command is used to change the current mouse speed only. The new speed setting is

set with the command in the least significant byte of the command word. Valid speeds

are >00 to >07 with >00 being the fastest possible setting.

 Example

 LIMI 0 Interrupts OFF!

10
Programmer’s Development Kit

 LI R0,>0403 Command and speed setting

 MOV R0,@COMREG

 LIMI 2 Enable interrupts

Command: >0005 Disable Mouse Driver

This command will effectively deactivate the Mouse Driver without actually disabling the

Driver itself. The Mouse driver will turn off the pointer sprite or flashing text cursor and

will not return mouse location values or button status when deactivated. It does,

however, still check the command register and checks for all three buttons being pressed

to disable the Driver. Using the >0001 Set Mouse command will re-activate the driver

once again. The main purpose of this command is for multi-tasking with a program with

its own mouse support routines so as to not cause a conflict. While de-activated, the

MSPD register will hold a value of >FFFF.

Command: >FFFF Disable Mouse Driver

This command will disable the Mouse Driver. This function can also be accomplished by

pressing all three mouse buttons at the same time. Once disabled, the Driver will no

longer return any information to the program or update any registers. In order to re-

activate the Driver in this state, you must first write any non-zero byte to the byte at

>0062 in your program and then use the >0001 command explained above.

 Example

 LIMI 0 Interrupts OFF!

 LI R0,>FFFF

 MOV R0,@COMREG

 LIMI 2 Interrupts enabled

USING THE READ ONLY REGISTERS

There are 6 read only registers which return information about the mouse. These registers

are updated approximately 30 times per second and can be read with interrupts enabled.

11
Programmer’s Development Kit

The positions returned are pixel positions of the mouse and will not exceed the maximum

pixel count for the current video mode. The maximum pixel row is always 212 pixels.

 MSX - This register returns the current X (pixel column) position of the mouse between

0 and the maximum for the current video mode. This register is one word (2 bytes)

Example: MOV @MSX,R0

 MSY - This register returns the current Y (pixel row) position of the mouse between 0

and 211 (all video modes). This register is also one word (2 bytes).

 BUT1 to BUT3 – These registers return the current state of the mouse buttons 1 to 3 (left

to right). Upon the press of a button, the Driver returns values from >01 to >0A as the

button is held down. If the user continues to hold the button, the Driver returns a value

of >FF (-1). The counting sequence from >01 to >0A allows a user program to adjust the

amount of time the programmer wants to allow the user to hold a button to compensate

for programs that check for button presses at different times and also for changes in video

modes which can vary results. This is illustrated in the sample source code included with

this package. Proper use of this feature can create programs that vary rarely miss the

press of a mouse button.

 Example: CB @BUT1,@H06 * Check for button 1 press

 JH IGNORE * They are holding the button

 MSPD – This register holds the current speed of the mouse 0-7 with 0 being the fastest

speed. This register uses a full word with the speed right justified in that word.

NOTES ON USING THE MOUSE DRIVER

This is some additional information for programmers on using the Mouse Driver.

The Mouse Driver register locations are from >F200 to >F211 of execution page 7 of MDOS. These

areas of memory will be overwritten by the Mouse Driver. Your program is free to use any other

space above >F212 normally. You may also freely swap any page into the page 7 execution space

without disrupting the Mouse Driver. It is recommended that you turn interrupts off when

12
Programmer’s Development Kit

placing a new page 7 number into the mapper and use the statement CLR @>F200 after paging

in your new page before turning on interrupts. This is case the new page might inadvertently

hold a value such as >FFFF at that address which will disable the Mouse Driver.

The Mouse Driver should be disabled before entering Advanced Basic to avoid any conflicts with

the mouse support of Abasic. Also, it appears that Abasic uses memory where the mouse

registers are located.

You should always execute the set mouse command before trying to read any values from the

mouse registers the first time. Until the mouse is set and activated, the values returned may be

inaccurate.

Your program should be able to run normally with interrupts enabled as the Mouse Driver is very

transparent in memory, however interrupts must be disabled when writing to the mouse

registers and then re-enabled afterward. Since the Mouse Driver is a part of the interrupt routine,

it is necessary for your program to allow interrupts to happen to be able to use the Driver

effectively.

My main hope with this program is to develop a standard mouse interface that will lead to

programs being written without worrying about mouse support. By standardizing a system of

registers, programs can be written generically to allow access to the mouse without a lot of effort

by programmers. Also should some other type of mouse come along, if a standard has been set,

then a driver can be written for the new hardware that will eliminate the need for programming

for several different mice.

IN CLOSING

I sincerely hope that this Mouse Driver will help in the development of more mouse driven

software for the 9640. The mouse support of the 9640 is just one of the greatly untapped

resources available to programmers and users. If you have any comments on the Mouse Driver,

please feel free to forward them to me at the address listed below.

The Mouse Driver is a registered commercial software and is not freeware or public domain. The

copy included in this package is for your development use only and purchasing this package does

not authorize duplication or distribution off the Mouse Driver. If you develop software which

utilizes this Driver, it will be necessary for you to make arrangements either with myself or an

authorized distributor if you wish to distribute the driver with your software. A fee is required for

each copy of the Driver distributed and each copy must be encoded with the user’s name and a

unique registration number.

13
Programmer’s Development Kit

ACKNOWLEDGEMENTS

I would like to thank Beery Miller and Al Beard for their help and support in the development of

this product. Their suggestions and testing have made this project possible. I would also like to

thank the tireless efforts of all programmers who are helping to keep the TI-99/4A and Geneve

computers alive for the thousands of users out there.

Bruce Hellstrom

7055 N. Sepulveda Blvd, Apt. 5

Van Nuys, California 91405

(818) 782-2307

Delphi Address: BLHELLSTROM

ADDENDUM

Notes from Beery Miller (11/19/2022)

In the 1990’s, Bruce Hellstrom added an additional serial based mouse driver that could be

connected to the RS232. In late 2022, Beery Miller modified the existing Bus Mouse source code

resulting in a mouse driver working with the TIPI and Raspberry PI connected to the PI’s USB port.

Source code for all three versions are supplied in the distribution package. Filenames for the

mouse drivers in this updated package have been renamed as such:

BUSMOUSE – Bruce Hellstrom’s original Geneve 9640 Bus mouse driver plugging into the Geneve.

SERMOUSE – Bruce Hellstrom’s original RS232 based mouse driver.

TIPIMOUSE – The TIPI/PI Mouse driver from modified source code. The TIPI Mouse Driver

requires version 7.40 or higher of MDOS.

